Nitrogen-doped carbon nanotubes (N-CNTs) are found to be active as one novel heterogeneous catalyst for acetylene hydrochlorination reaction, possessing good activity (TOF=2.3×10(-3) s(-1) ) and high selectivity (>98 %). Compared to toxic and energy-consuming conventional catalysts, such as HgCl2 , N-CNTs are more favorable in terms of sustainability, because of their thermo-stability, metal-free make up, and the wide availability of bulk CNT. Coupling X-ray photoelectron spectroscopy and density functional theory computations (DFT), the main active source and reaction pathway are shown. Good linearity between the quaternary nitrogen content and conversion is revealed. DFT study shows that the nitrogen doping enhanced the formation of the covalent bond between C2 H2 and NCNT compared with the undoped CNT, and therefore promoted the addition reaction of the C2 H2 and HCl into C2 H3 Cl.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.201300793 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!