Nucleolar channel systems (NCSs), micron-sized organelles specific to nuclei of human endometrial epithelial cells (EECs), are robust markers of the midluteal phase under the apparent control of progesterone. To gain further insight into the role of progesterone in NCS formation, we quantitatively assessed their sensitivity to oral contraceptive pills (OCPs) using immunofluorescence-based detection of NCSs. Comparison of endometrial biopsies and serum progesterone levels on cycle day (CD) 10 and 20 (LH +6/7) of 6 naturally cycling women and 6 OCP users demonstrated that OCPs interfered with NCS formation on CD20, their natural peak presence. Although this confirmed prior observation based on electron microscopic sampling, OCPs unexpectedly induced limited but distinct amounts of NCSs already on CD10, when they are never present in natural cycles. Thus, OCPs can cause secretory changes in the endometrium during the proliferative phase. In a novel finding, robust NCS formation on CD20 was dependent on a 4 ng/mL progesterone threshold but did not correlate linearly with serum progesterone levels. Given the threshold being close to that serving as evidence for ovulation, NCSs can serve as ovulation markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107570PMC
http://dx.doi.org/10.1177/1933719113519177DOI Listing

Publication Analysis

Top Keywords

ncs formation
12
progesterone threshold
8
nucleolar channel
8
serum progesterone
8
progesterone levels
8
formation cd20
8
progesterone
6
threshold determines
4
determines nucleolar
4
channel system
4

Similar Publications

Fluorescent iron nanoclusters are emerging fluorescent nanomaterials. Herein, we synthesized hemoglobin-coated iron nanoclusters (Hb-Fe NCs) with a significant fluorescence emission peak at 615 nm and investigated the inner-filter effect of fluorescence induced by a manganese dioxide nanosheet (MnO NS). The fluorescence quenching of Hb-Fe NCs by a MnO NS can be significantly reversed by the addition of ascorbic acid.

View Article and Find Full Text PDF

Transcriptome Analysis of and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis.

Molecules

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

The medicinal plant is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported.

View Article and Find Full Text PDF

Multidrug-resistant infections pose a critical challenge to healthcare systems, particularly in nosocomial settings. This drug-resistant bacterium forms biofilms and produces an array of virulent factors regulated by quorum sensing. In this study, metal-tolerant bacteria were isolated from a metal-contaminated site and screened for their ability to synthesize multifunctional nanocomposites (NCs).

View Article and Find Full Text PDF

Aim: Vascularized lymph node transfer (VLNT) accelerates growth factor secretion, lymphatic endothelial cell migration toward the interstitial flow and lymphagiogenesis in a multidirectional pattern. Our observational study aimed to examine the hypothesis that nanofibrillar collagen scaffolds (NCS) combined with VLNT can provide guided lymphagiogenesis creating long-lasting lymphatic pathways.

Methods: Twenty-four patients (21 female, 3 male) underwent a lymphatic microsurgery for upper ( = 11) or lower ( = 13) limb secondary lymphedema and completed at least 18 months follow-up were selected and equally divided in 2 groups; Group-A underwent VLNT, Group-B underwent combined VLNT and NCS procedure.

View Article and Find Full Text PDF

Triangular-shaped Cu-Zn-In-Se-based nanocrystals with narrow near infrared photoluminescence.

Nanoscale

January 2025

Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany.

Tunable optical properties exhibited by semiconductor nanocrystals (NCs) in the near infrared (NIR) spectral region are of particular interest in various applications, such as telecommunications, bioimaging, photodetection, photovoltaics, . While lead and mercury chalcogenide NCs do exhibit exemplary optical properties in the NIR, Cu-In-Se (CISe)-based NCs are a suitable environment-friendly alternative to these toxic materials. Several reports of NIR-emitting (quasi)spherical CISe NCs have been published, but their more complex-shaped counterparts remain rather less explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!