Objective: The aim of this study was to test the effect of Carvacrol against oral pathogens and their preformed biofilms on titanium disc surface.

Methods: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and biofilm inhibitory concentration (BIC) were performed to evaluate Carvacrol antibacterial activity, while flow cytometry (FCM) was used to verify the Carvacrol effect on esterase activity and membrane permeability. Carvacrol was tested in vitro on single- and multi-species biofilms formed on titanium disc by Streptococcus mutans ATCC 25175, Porphyromonas gingivalis ATCC 33277 or Fusobacterium nucleatum ATCC 25586, in different combinations, comparing its effect to that of chlorhexidine.

Results: The pathogens were sensitive to Carvacrol with MICs and MBCs values of 0.25 % and 0.50 % and BICs of 0.5 % for S. mutans ATCC 25175 and 1 % for P. gingivalis ATCC 33277 and F. nucleatum ATCC 25586. FCM analysis showed that treatment of planktonic cultures with Carvacrol caused an increase of damaged cells and a decrement of bacteria with active esterase activity. Moreover, Carvacrol demonstrated greater biofilm formation preventive property compared to chlorhexidine against titanium-adherent single- and multi-specie biofilms, with statistically significant values.

Conclusions: Carvacrol showed inhibitory activity against the tested oral pathogens and biofilm formation preventive property on their oral biofilm; then, it could be utilized to control and prevent the colonization of microorganisms with particular significance in human oral diseases.

Clinical Relevance: This natural compound may be proposed in daily hygiene formulations or as an alternative agent supporting traditional antimicrobial protocols to prevent periodontal diseases in implanted patients.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-013-1179-9DOI Listing

Publication Analysis

Top Keywords

carvacrol
9
activity carvacrol
8
planktonic cultures
8
oral pathogens
8
titanium disc
8
inhibitory concentration
8
esterase activity
8
mutans atcc
8
atcc 25175
8
gingivalis atcc
8

Similar Publications

Six biobased ionic liquids were prepared from saturated fatty acids (octanoic, decanoic and dodecanoic acids) and choline with yields up to 90% following procedures respecting green chemistry principles. These ionic liquids were fully characterized (NMR, IR, elemental analysis, viscosimetry and TGA) and used as extraction solvents for bioactive compounds (curcuminoids and carvacrol) using classical conditions, and the ionic liquids were able to be recovered after five runs without loss of activity. The ionic liquid containing a C12 carbon chain was the best extracting solvent, extracting 95% of the total curcuminoids contained in turmeric and 69% of the total carvacrol contained in oregano, which are higher yields compared to the extraction procedures described in the literature.

View Article and Find Full Text PDF

Synthesis, Characterization, and Evaluation of the Antifungal Properties of 3-Indolyl-3-Hydroxy Oxindole Derivatives Against Plant Pathogenic Fungi.

Molecules

February 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.

To discover novel fungicides with good inhibitory effects on plant fungal diseases, twenty-five 3-indolyl-3-hydroxy oxindole derivatives (3a-3y) were synthesized. These newly derivatives were characterized by NMR and HRMS. Their antifungal activities against five plant pathogenic fungi were assessed in vitro.

View Article and Find Full Text PDF

The use of essential oil components as natural antifungal preservatives in the active packaging of bread is an innovative approach that leverages the antimicrobial properties of these compounds to extend the shelf life of bread and ensure its safety. The aim of the present work was the thorough investigation of the antioxidant properties and antifungal activity of low-density polyethylene (LDPE or PE) nanocomposite films with organically modified montmorillonite (O) loaded with carvacrol (C) or thymol (T) as a function of time, starting from 2 months and concluding at 12 months. The films PE_OC and PE_OT were prepared through the evaporation/adsorption method, a green methodology developed by our group compatible with food packaging.

View Article and Find Full Text PDF

It has been well known for the past decade that the accumulation of food E-preservatives in the human body has harmful consequences for human health. Furthermore, scientists have realized that despite the convenience offered by petrochemical-derived polymers, a circular economy and sustainability are two current necessities; thus, the use of biodegradable alternative materials is imposed. The food packaging sector is one of the most rapidly changing sectors in the world.

View Article and Find Full Text PDF

Polymer-based drug-controlled release systems offer greater efficacy and potency than conventional therapies. However, prominent drug side effects, lower circulation, and low drug loading capabilities limit their application range. In this work, the combination of Simvastatin (SIV) and Carvacrol (CAV) into PEG-PLGA microspheres (SIV-CAV-PP-MS) was achieved via an emulsification-solvent evaporation technique, resulting in microspheres characterized by high encapsulation efficiency and reduced particle size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!