The onset of injury and subsequent period of immobilization and disuse present major challenges to maintenance of skeletal muscle mass and function. Although the characteristics of immobilization-induced muscle atrophy are well documented in laboratory studies, comparable data from elite athletes in free-living conditions are not readily available. We present a 6-month case-study account from a professional soccer player of the English Premier League characterizing rates of muscle atrophy and hypertrophy (as assessed by DXA) during immobilization and rehabilitation after ACL injury. During 8 weeks of inactivity and immobilization, where the athlete adhered to a low carbohydrate-high protein diet, total body mass decreased by 5 kg attributable to 5.8 kg loss and 0.8 kg gain in lean and fat mass, respectively. Changes in whole-body lean mass was attributable to comparable relative decreases in the trunk (12%, 3.8 kg) and immobilized limb (13%, 1.4 kg) whereas the nonimmobilized limb exhibited smaller declines (7%, 0.8 kg). In Weeks 8 to 24, the athlete adhered to a moderate carbohydrate-high protein diet combined with structured resistance and field based training for both the lower and upper-body that resulted in whole-body muscle hypertrophy (varying from 0.5 to 1 kg per week). Regional hypertrophy was particularly pronounced in the trunk and nonimmobilized limb during weeks 8 to 12 (2.6 kg) and 13 to 16 (1.3 kg), respectively, whereas the previously immobilized limb exhibited slower but progressive increases in lean mass from Week 12 to 24 (1.2 kg). The athlete presented after the totality of the injured period with an improved anthropometrical and physical profile.

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijsnem.2013-0209DOI Listing

Publication Analysis

Top Keywords

muscle atrophy
12
atrophy hypertrophy
8
premier league
8
soccer player
8
rehabilitation acl
8
acl injury
8
athlete adhered
8
carbohydrate-high protein
8
protein diet
8
lean mass
8

Similar Publications

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Background: Ankle sprains often result in muscle atrophy and reduced range of motion, which can cause long-term ankle instabilities. Understanding the changes to muscle-such as atrophy-and concomitant changes to deep fascia-which may thicken alongside muscle loss-after ankle sprain injury is important to understanding structural changes about the joint and how they might contribute to longer-term impairments. Here, we employ advanced MRI to investigate skeletal muscle and fascial structural changes during the recovery period of one patient undergoing immobilization after ankle sprains.

View Article and Find Full Text PDF

Methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessive genetic disorder caused by mutations in the gene, leading to a variety of clinical manifestations. In October 2022, the Second Xiangya Hospital of Central South University admitted a 21-year-old male patient with neuropsychiatric disorders, presenting primarily with cognitive decline, limb tremors, abnormal mental and behavioral symptoms, seizures, and gait disturbances. These symptoms had gradually developed over 5 years, worsening significantly in the past year.

View Article and Find Full Text PDF

Motor function and compound muscle action potential amplitude in children with spinal muscular atrophy treated with nusinersen.

Brain Dev

January 2025

Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China. Electronic address:

Background: Disease-modifying therapies can improve motor function in patients with spinal muscular atrophy (SMA), but efficacy varies between individuals. The aim was to evaluate the efficacy and safety of nusinersen treatment in children with SMA and to investigate prognostic factors.

Methods: Motor function, compound muscle action potential (CMAP), and other indicators were prospectively collected before and 14 months after nusinersen treatment.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Prenuvo, Vancouver, BC, Canada.

Background: Sarcopenia has been linked to brain atrophy and there is lack of information on specific muscle groups that may contribute to this link. The psoas muscles are sensitive to sarcopenia and thus may sensitively relate to brain aging and Alzheimer disease risk.

Method: This study utilized 7,149 healthy individuals across four sites (Mean age 53.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!