Two modes of exocytosis in an artificial cell.

Sci Rep

Chalmers University of Technology, Department of Chemical and Biological Engineering, 412 96 Gothenburg, Sweden.

Published: January 2014

The details of exocytosis, the vital cell process of neuronal communication, are still under debate with two generally accepted scenarios. The first mode of release involves secretory vesicles distending into the cell membrane to release the complete vesicle contents. The second involves partial release of the vesicle content through an intermittent fusion pore, or an opened or partially distended fusion pore. Here we show that both full and partial release can be mimicked with a single large-scale cell model for exocytosis composed of material from blebbing cell plasma membrane. The apparent switching mechanism for determining the mode of release is demonstrated to be related to membrane tension that can be differentially induced during artificial exocytosis. These results suggest that the partial distension mode might correspond to an extended kiss-and-run mechanism of release from secretory cells, which has been proposed as a major pathway of exocytosis in neurons and neuroendocrine cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900996PMC
http://dx.doi.org/10.1038/srep03847DOI Listing

Publication Analysis

Top Keywords

mode release
8
partial release
8
fusion pore
8
release
6
cell
5
modes exocytosis
4
exocytosis artificial
4
artificial cell
4
cell details
4
exocytosis
4

Similar Publications

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Binding mechanism and antagonism of the vesicular acetylcholine transporter VAChT.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

The vesicular acetylcholine transporter (VAChT) has a pivotal role in packaging and transporting acetylcholine for exocytotic release, serving as a vital component of cholinergic neurotransmission. Dysregulation of its function can result in neurological disorders. It also serves as a target for developing radiotracers to quantify cholinergic neuron deficits in neurodegenerative conditions.

View Article and Find Full Text PDF

The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor.

Environ Pollut

January 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia; Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic. Electronic address:

Tire wear microplastics (TWMs) are continuously generated during driving and are subsequently released into the environment, where they pose potential risks to aquatic organisms. In this study, the effects of untreated, hydrated, and environmentally aged TWMs on the growth, root development, photosynthesis, electron transport system (ETS) activity, and energy-rich molecules of duckweed Lemna minor were investigated. The results indicated that untreated and aged TWMs have the most pronounced negative effects on Lemna minor, as evidenced by reduced growth and impaired root development.

View Article and Find Full Text PDF

Lateral flow assay with automatic signal amplification based on delayed substrate release.

Talanta

January 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.

The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated.

View Article and Find Full Text PDF

Flow injection mass spectrometry (FI-MS) is widely employed for high-throughput metabolome analysis, yet the absence of prior separation leads to significant matrix effects, thereby limiting the metabolome coverage. In this study, we introduce a novel photosensitive MS probe, iTASO-ONH, integrated with FI-MS to establish a high-throughput strategy for submetabolome analyses. The iTASO probe features a conjugated-imino sulfonate moiety for efficient photolysis under 365 nm irradiation and a reactive group for selective metabolite labeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!