The effects of muscle fatigue on the stability of precision grasps are not well known. The purpose of the current study was to investigate the effects of exercise-induced fatigue of a digit on prehension synergies in a static precision grasp. One group of participants performed the fatiguing exercise using the thumb (group-thumb) and the second group performed the exercise using the index finger (group-index). Grasp force and load-resisting force-stabilizing synergies were weaker during fatigue for group-thumb and showed no significant change for group-index. These results indicate that fatiguing the thumb compromises the stability of the precision grasp more than when the index finger is fatigued. Our results support the idea of hierarchical organization of prehension control. We proffer an explanation of our results based on two control constructs: a) Principle of superposition. This principle states that prehension can be viewed as a superposition of two independent processes controlling the slip and the tilt of the object respectively; and b) The referent configuration hypothesis. According to this hypothesis, the neural control of actions is associated with defining a set of referent values for task-related coordinates (given an external force field) defined as the referent configuration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6003241PMC
http://dx.doi.org/10.1123/mc.2013-0069DOI Listing

Publication Analysis

Top Keywords

prehension synergies
8
stability precision
8
precision grasp
8
referent configuration
8
prehension
4
fatigue
4
synergies fatigue
4
fatigue single
4
single digit
4
digit adaptations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!