A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Micro-molding with ultrasonic vibration energy: new method to disperse nanoclays in polymer matrices. | LitMetric

Micro-molding with ultrasonic vibration energy: new method to disperse nanoclays in polymer matrices.

Ultrason Sonochem

Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, E-08028 Barcelona, Spain; Center for Research in Nano-Engineering (CRNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028, Spain. Electronic address:

Published: July 2014

Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%. Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites. X-ray diffraction patterns of nanocomposites prepared by direct micro-molding of PLA or PBS powder mixtures with natural montmorillonite or different organo-modified clays showed the disappearance of the 001 silicate reflection for specimens having up to 6 wt.% clay content. All electron micrographs revealed relatively homogeneous dispersion and sheet nanostructures oriented in the direction of the melt flow. Incorporation of clay particles during processing had practically no influence on PLA characteristics but enhanced PBS degradation when an organo-modifier was employed. This was in agreement with thermal stability data deduced from thermogravimetric analysis. Cold crystallization experiments directly performed on micro-molded PLA specimens pointed to a complex influence of clay particles reflected by the increase or decrease of the overall non-isothermal crystallization rate when compared to the neat polymer. In all cases, the addition of clay led to a clear decrease in the Avrami exponent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2013.12.027DOI Listing

Publication Analysis

Top Keywords

clay particles
8
clay
5
micro-molding ultrasonic
4
ultrasonic vibration
4
vibration energy
4
energy method
4
method disperse
4
disperse nanoclays
4
nanoclays polymer
4
polymer matrices
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!