Three new oleanane-type triterpenoid saponins named celosins H, I, and J were isolated from the seeds of Celosia argentea L. Their structures were characterized as 3-O-β-D-xylopyranosyl-(1 → 3)-β-D-glucuronopyranosyl-polygalagenin 28-O-β-D-glucopyranosyl ester, 3-O-β-D-glucuronopyranosyl-medicagenic acid 28-O-β-D-xylcopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranosyl ester, and 3-O-β-D-glucuronopyranosyl-medicagenic acid 28-O-α-L-arabinopyranosyl-(1 → 3)-[β-D-xylcopyranosyl-(1 → 4)]-α-L-rhamnopyranosyl-(1 → 2)-β-D-fucopyranosyl ester by NMR, MS, and chemical evidences, respectively. In our opinion, celosins H-J could be used as chemical markers for the quality control of C. argentea seeds.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10286020.2013.879120DOI Listing

Publication Analysis

Top Keywords

oleanane-type triterpenoid
8
triterpenoid saponins
8
isolated seeds
8
seeds celosia
8
celosia argentea
8
ester 3-o-β-d-glucuronopyranosyl-medicagenic
8
3-o-β-d-glucuronopyranosyl-medicagenic acid
8
→ 2-β-d-fucopyranosyl
8
2-β-d-fucopyranosyl ester
8
6

Similar Publications

Alzheimer's disease (AD) poses a significant public health issue. Despite the fact that today there are several methods of maintenance therapy, one of the most widely used methods is designed to correct the deficiency of acetylcholine. In the search for new potential inhibitors of cholinesterase enzymes, eight new derivatives of 3-oxo- or 2,3-indolo-triterpenic acid conjugated with amino-quinuclidine bicyclic cores were designed and synthesized.

View Article and Find Full Text PDF

Combined metabolomic and transcriptomic analysis reveals the key genes for triterpenoid biosynthesis in Cyclocarya paliurus.

BMC Genomics

December 2024

The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Key Laboratory of Developmental and Neural Biology College of Life Sciences, Fujian Normal University, Fuzhou, China.

Background: Cyclocarya paliurus is a high-value tree, and it contains a variety of bioactive secondary metabolites which have broad application prospects in medicine, food and health care. Triterpenoids can improve the bioactive function of C. paliurus health tea and also improve the efficacy of health care tea.

View Article and Find Full Text PDF

Discovery and Functional Identification of 2,3-Oxidosqualene Cyclases and Cytochrome P450s in Triterpenoid Metabolic Pathways of .

J Agric Food Chem

December 2024

Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.

Article Synopsis
  • * The study identified key enzyme genes involved in the triterpenoid metabolic pathways using transcriptome sequencing and synthetic biology, particularly focusing on two 2,3-oxidosqualene cyclases and two cytochrome P450s.
  • * Researchers successfully reconstructed the biosynthetic pathway for ursane and oleanane-type triterpenoids in a yeast host, detailing the enzymatic reactions necessary for producing important compounds like ursolic acid and oleanolic acid.
View Article and Find Full Text PDF

Research progress on chemical diversity of saponins in .

Chin Herb Med

October 2024

School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.

Saponins, the major bioactive components of C. A. Mey.

View Article and Find Full Text PDF

Ginsenoside Ro, as one of the few oleanane-type ginsenosides, is well known for its unique molecular structure and biological activities. Currently, research on the biosynthesis of ginsenoside Ro is still in its early stages. Therefore, the establishment of a new ginsenoside Ro cell factory is of great significance for the in-depth development and utilization of genes related to ginsenoside Ro synthesis, as well as for the exploration of pathways to obtain ginsenoside Ro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!