Fetal intrauterine growth restriction (IUGR) is a serious pregnancy complication associated with increased rates of perinatal morbidity and mortality, and ultimately with long-term neurodevelopmental impairments. No intervention currently exists that can improve the structure and function of the IUGR brain before birth. Here, we investigated whether maternal antenatal melatonin administration reduced brain injury in ovine IUGR. IUGR was induced in pregnant sheep at 0.7 gestation and a subset of ewes received melatonin via intravenous infusion until term. IUGR, IUGR + melatonin (IUGR + MLT) and control lambs were born naturally, neonatal behavioral assessment was used to examine neurological function and at 24 hr after birth the brain was collected for the examination of neuropathology. Compared to control lambs, IUGR lambs took significantly longer to achieve normal neonatal lamb behaviors, such as standing and suckling. IUGR brains showed widespread cellular and axonal lipid peroxidation, and white matter hypomyelination and axonal damage. Maternal melatonin administration ameliorated oxidative stress, normalized myelination and rescued axonopathy within IUGR lamb brains, and IUGR + MLT lambs demonstrated significant functional improvements including a reduced time taken to attach to and suckle at the udder after birth. Based on these observations, we began a pilot clinical trial of oral melatonin administration to women with an IUGR fetus. Maternal melatonin was not associated with adverse maternal or fetal effects and it significantly reduced oxidative stress, as evidenced by reduced malondialdehyde levels, in the IUGR + MLT placenta compared to IUGR alone. Melatonin should be considered for antenatal neuroprotective therapy in human IUGR.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12121DOI Listing

Publication Analysis

Top Keywords

iugr
15
melatonin administration
12
iugr mlt
12
melatonin
8
brain injury
8
growth restriction
8
iugr iugr
8
iugr melatonin
8
control lambs
8
maternal melatonin
8

Similar Publications

Drayer Syndrome due to Chromosome 15q26.3 Deletion: Response to Growth Hormone Treatment.

Sisli Etfal Hastan Tip Bul

December 2024

Division of Pediatric Endocrinology, Department of Pediatrics, University of Health Sciences Türkiye, Sisli Hamidiye Etfal Training and Research Hospital, Istanbul, Türkiye.

Chromosome 15q26 deletion is a rare condition that causes short stature and is associated with intrauterine growth restriction (IUGR), failure to thrive, congenital heart disease and many congenital malformations. The insulin growth factor receptor (IGF-1R) on chromosome 15 has many important roles, especially in growth regulation. Our case is an 18-month-old small for gestational age girl who presented with severe short stature, microcephaly and minor dysmorphic features.

View Article and Find Full Text PDF

Probiotic-rich fermented milk from IIA-1A5: Effects on pregnancy health in the animal model.

Narra J

December 2024

Department of Animal Production and Technology, Faculty of Animal Science, Institut Pertanian Bogor, Bogor, Indonesia.

Previous studies of IIA-1A5 have shown its potential as a probiotic in modulating gut microbiota and providing health benefits; however, its effects during pregnancy remain underexplored. The aim of this study was to assess the safety of fermented milk enriched with IIA-IA5 in pregnant mice. An experimental study was conducted at Universitas Andalas, Padang, Indonesia.

View Article and Find Full Text PDF

The spatial zonation of the murine placental vasculature is specified by epigenetic mechanisms.

Dev Cell

January 2025

Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany. Electronic address:

The labyrinthian fetoplacental capillary network is vital for proper nourishment of the developing embryo. Dysfunction of the maternal-fetal circulation is a primary cause of placental insufficiency. Here, we show that the spatial zonation of the murine placental labyrinth vasculature is controlled by flow-regulated epigenetic mechanisms.

View Article and Find Full Text PDF

Neonatal outcomes among twins born through assisted reproduction, compared to those born naturally.

Medicine (Baltimore)

November 2024

Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

The growing prevalence of assisted reproductive technology (ART) is leading to a continuous rise in twin pregnancies. This study assessed the influence of ART on neonatal outcomes of twin pregnancies. Clinical records of twin deliveries at Fujian Maternity and Child Health Hospital between 2019 and 2021 were retrospectively selected and grouped based on the method of conception: ART-conceived and naturally conceived.

View Article and Find Full Text PDF

Background: Intrauterine growth restriction (IUGR) is a severe condition in which the fetus fails to reach its genetically predetermined growth potential, impairing prenatal development and predisposing individuals to postnatal consequences that may persist into adulthood. Although fetal mechanisms such as the brain-sparing effect have been proposed to protect the brain against IUGR-related deficits, the extent of this protection remains unclear.

Objective: To conduct a systematic review that demonstrates prenatal morphofunctional abnormalities in the brain of individuals with IUGR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!