A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design of novel miconazole nitrate transdermal films based on Eudragit RS100 and HPMC hybrids: preparation, physical characterization, in vitro and ex vivo studies. | LitMetric

The objective of this study was to formulate and evaluate transdermal films containing miconazole nitrate (MN), a poorly water-soluble imidazole antifungal agent, with a view to enhancing its delivery across intact skin. Transdermal films of MN were formulated by solvent casting technique using admixtures of film-forming polymers - Eudragit RS100 and hydroxypropylmethylcellulose (HPMC) (2:8, 4:6, 5:5, 6:4 and 8:2) with polyethylene glycol 8000 (plasticizer and permeation enhancer) and Tween 80 (mobile surfactant). The films were evaluated for weight uniformity, folding endurance, thickness, moisture loss and uptake, bioadhesive strength, drug content, skin irritation on rabbits and time-resolved stability. The ex vivo release of MN from the films was carried out using a modified Franz diffusion apparatus while the microbiological evaluation was conducted using a clinical isolate of Candida albicans. Overall results indicate that films made with two portions of Eudragit RS100 and eight portions of HPMC (batch T-1) had the least weight variation (57.33 ± 0.27 mg), folding endurance (307.90 ± 4.17), moisture uptake (1.37 ± 0.28%) and thickness (145.9 ± 2.08 µm), but highest drug content (97.50 ± 2.43%) and bioadhesive strength (81.40 ± 2.03 dyne/cm), best bioactivity and in vitro skin permeation through rat skin with highest permeation flux (5.161 µg/cm h) and permeation coefficient (1.032 × 10cm/h) compared to all other formulations. This study has established that transdermal films based on 2:8 admixtures of Eudragit RS100 and HPMC could offer a promising approach for the treatment of skin infections caused by MN-susceptible fungi.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10717544.2013.875604DOI Listing

Publication Analysis

Top Keywords

transdermal films
16
eudragit rs100
16
miconazole nitrate
8
films based
8
rs100 hpmc
8
folding endurance
8
bioadhesive strength
8
drug content
8
films
7
skin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!