A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants]. | LitMetric

[A review of uptake, translocation and phytotoxicity of engineered nanoparticles in plants].

Huan Jing Ke Xue

Department of Environmental Science and Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.

Published: November 2013

With the increasing use of engineered nanoparticles, these materials will inevitably be released into the environment with unknown consequences. The interactions between engineered nanoparticles and plants are of particular concern, and the uptake by plants may constitute one of the main routes of exposure for species at a higher trophic level, leading to possible biomagnification of nanoparticles in the food chain. A review of the current literature shows that nanoparticles can be taken up by plants and cause phytotoxicity. The mechanisms by which engineered nanoparticles penetrate plant cells are still not well understood. Most of the studies have been performed with a few plant species under non-natural conditions such as hydroponics, and have included only the germination or seedling growth stage. Nanoparticles may undergo biotransformation and subsequent translocation within plants, although the mechanisms are poorly understood. Phytotoxicity is an important aspect for assessing potential environmental impacts of nanoparticles, but the mode of toxicity remains to be investigated.

Download full-text PDF

Source

Publication Analysis

Top Keywords

engineered nanoparticles
16
nanoparticles
8
nanoparticles plants
8
review uptake
4
uptake translocation
4
translocation phytotoxicity
4
engineered
4
phytotoxicity engineered
4
nanoparticles plants]
4
plants] increasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!