In this study, 155 clinical Mycobacterium tuberculosis isolates were subject to genotyping with fast ligation-mediated PCR (FLiP). This typing method is a modified mixed-linker PCR, a rapid approach based on the PCR amplification of HhaI restriction fragments of genomic DNA containing the 3' end of IS6110 and resolving the amplicons by polyacrylamide gel electrophoresis. The results were compared with previous data of the more commonly used methods, 15-locus mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing and, to verify combined FLiP/MIRU-VNTR clusters, the reference IS6110 restriction fragment length polymorphism (RFLP). FLiP banding patterns were highly reproducible and polymorphic. This method differentiated 119 types among the study set compared to 108 distinct MIRU-VNTR profiles. The discriminatory power of FLiP was slightly higher than that of MIRU-VNTR analysis (Hunter-Gaston Discriminatory Index = 0.991 and 0.990, resp.). Detailed comparison of the clusters defined by each of the methods revealed, however, a more apparent difference in the discriminatory abilities that favored FLiP. Clustering of strains by using combined results of these two PCR-based methods correlated well with IS6110 RFLP-defined clusters, further confirming high discriminatory potential of FLiP typing. These results indicate that FLiP could be an attractive and valuable secondary typing technique for verification of MIRU-VNTR clusters of M. tuberculosis strains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877603 | PMC |
http://dx.doi.org/10.1155/2013/865197 | DOI Listing |
Int J Mol Sci
December 2024
School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
Coding and non-coding RNAs (ncRNAs) are potential novel markers that can be exploited for TB diagnostics in the fight against . The current study investigated the mechanisms of transcript regulation and ncRNA signatures through Total RNA Seq and small (smRNA) RNA Seq followed by Bioinformatics analysis in Beijing and F15/LAM4/KZN (KZN) clinical strains compared to the laboratory strain. Total RNA Seq revealed differential regulation of RNA transcripts in Beijing (n = 1095) and KZN (n = 856) strains compared to the laboratory H37Rv strain.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy.
Respiratory infections, including tuberculosis, constitute a major global health challenge. Tuberculosis (TB), caused by (Mtb), remains one of the leading causes of mortality worldwide. The disease's complexity is attributed to Mtb's capacity to persist in latent states, evade host immune defenses, and develop resistance to antimicrobial treatments, posing significant challenges for diagnosis and therapy.
View Article and Find Full Text PDFClin Microbiol Infect
January 2025
Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
Objectives: To investigate the association between quantitative T-SPOT.TB values and the risk of incident and prevalent tuberculosis disease (TBD), identify risk factors, and evaluate test accuracy.
Methods: This retrospective cohort study followed patients tested consecutively with T-SPOT.
Respir Med
January 2025
Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Microbiology, Harvard Medical School, Boston, United States. Electronic address:
Background: Hemoptysis is one of the major symptoms in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD). However, its prevalence, incidence, and impact on long-term prognosis remain uncertain. We evaluated the incidence of clinically significant hemoptysis, and determined its association with mortality in patients with NTM-PD.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States.
Developing new classes of drugs that are active against infections caused by is a priority for treating and managing this deadly disease. Here, we describe screening a small library of 20 DNA gyrase inhibitors and identifying new lead compounds. Three structurally diverse analogues were identified with minimal inhibitory concentrations of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!