Plant mating systems represent an evolutionary and ecological trade-off between reproductive assurance through selfing and maximizing progeny fitness through outbreeding. However, many plants with sporophytic self-incompatibility systems exhibit dominance interactions at the S-locus that allow biparental inbreeding, thereby facilitating mating between individuals that share alleles at the S-locus. We investigated this trade-off by estimating mate availability and biparental inbreeding depression in wild radish from five different populations across Australia. We found dominance interactions among S-alleles increased mate availability relative to estimates based on individuals that did not share S-alleles. Twelve of the sixteen fitness variables were significantly reduced by inbreeding. For all the three life-history phases evaluated, self-fertilized offspring suffered a greater than 50% reduction in fitness, while full-sib and half-sib offspring suffered a less than 50% reduction in fitness. Theory indicates that fitness costs greater than 50% can result in an evolutionary trajectory toward a stable state of self-incompatibility (SI). This study suggests that dominance interactions at the S-locus provide a possible third stable state between SI and SC where biparental inbreeding increases mate availability with relatively minor fitness costs. This strategy allows weeds to establish in new environments while maintaining a functional SI system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3892369PMC
http://dx.doi.org/10.1002/ece3.875DOI Listing

Publication Analysis

Top Keywords

dominance interactions
12
biparental inbreeding
12
mate availability
12
progeny fitness
8
interactions s-locus
8
individuals share
8
offspring suffered
8
greater 50%
8
50% reduction
8
reduction fitness
8

Similar Publications

Genetic variations in IGF2BP2 and CAPN10 and their interaction with environmental factors increase gestational diabetes mellitus risk in Chinese women.

Gene

January 2025

Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, China. Electronic address:

Aim: This study aims to investigate the association of the genetic variations in IGF2BP2 and CAPN10 as well as gene-environment interactions with the risk of gestational diabetes (GDM) in Chinese women.

Materials And Methods: A total of 1,566 pregnant Chinese women participated in this case-control study. We employed targeted next-generation sequencing to analyze specific SNPs in IGF2BP2 (rs11927381, rs1470579, rs4402960, rs7640539) and CAPN10/rs2975760.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China. Electronic address:

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Collaborative or competitive interactions between bacteria and methanogens on the biocorrosion of Q235A steel.

Environ Res

January 2025

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, China. Electronic address:

Bio-corrosion of Fe(0) metals in the actual environments results from the combined action of multiple microbes rather than the single action of one type of microbe. Nevertheless, the interspecies interactions between the corrosive microorganism and co-existing microbes, as well as their effects on the bio-corrosion of Fe(0) metals, remain unclear, especially for the interspecies interactions between methanogens and co-existed bacteria in microbiota in the absence of sulfate. Herein, the interspecies interactions between methanogens and co-existed bacteria in three different kinds of methanogenic microbiota (Methanothrix, Methanospirillum, or Methanobacterium dominant) and their effects on methanogens-influenced corrosion of Q235A steel were investigated.

View Article and Find Full Text PDF

Ion Networks in Water-based Li-ion Battery Electrolytes.

Acc Chem Res

January 2025

Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.

ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.

View Article and Find Full Text PDF

Cyanobacterial distributions are shaped by abiotic factors including temperature, light and nutrient availability as well as biotic factors such as grazing and viral infection. In this study, we investigated the abundances of T4-like and T7-like cyanophages and the extent of picocyanobacterial infection in the cold, high-nutrient-low-chlorophyll, sub-Antarctic waters of the southwest Pacific Ocean during austral spring. Synechococcus was the dominant picocyanobacterium, ranging from 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!