Basic studies of human pluripotential stem cells have advanced rapidly and stem cell products are now seeing therapeutic applications. However, questions remain regarding the tumorigenic potential of such cells. Here, we report the tumorigenic potential of induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) for the treatment of wet-type, age-related macular degeneration (AMD). First, immunodeficient mouse strains (nude, SCID, NOD-SCID and NOG) were tested for HeLa cells' tumor-forming capacity by transplanting various cell doses subcutaneously with or without Matrigel. The 50% Tumor Producing Dose (TPD50 value) is the minimal dose of transplanted cells that generated tumors in 50% of animals. For HeLa cells, the TPD50 was the lowest when cells were embedded in Matrigel and transplanted into NOG mice (TPD50 = 10(1.1), n = 75). The TPD50 for undifferentiated iPSCs transplanted subcutaneously to NOG mice in Matrigel was 10(2.12); (n = 30). Based on these experiments, 1×10(6) iPSC-derived RPE were transplanted subcutaneously with Matrigel, and no tumor was found during 15 months of monitoring (n = 65). Next, to model clinical application, we assessed the tumor-forming potential of HeLa cells and iPSC 201B7 cells following subretinal transplantation of nude rats. The TPD50 for iPSCs was 10(4.73) (n = 20) and for HeLa cells 10(1.32) (n = 37) respectively. Next, the tumorigenicity of iPSC-derived RPE was tested in the subretinal space of nude rats by transplanting 0.8-1.5×10(4) iPSC-derived RPE in a collagen-lined (1 mm×1 mm) sheet. No tumor was found with iPSC-derived RPE sheets during 6-12 months of monitoring (n = 26). Considering the number of rodents used, the monitoring period, the sensitivity of detecting tumors via subcutaneous and subretinal administration routes and the incidence of tumor formation from the iPSC-derived RPE, we conclude that the tumorigenic potential of the iPSC-derived RPE was negligible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891869PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085336PLOS

Publication Analysis

Top Keywords

ipsc-derived rpe
24
stem cell
12
tumorigenic potential
12
hela cells
12
induced pluripotent
8
pluripotent stem
8
ipsc-derived
8
cell ipsc-derived
8
ipsc-derived retinal
8
retinal pigment
8

Similar Publications

Retinal pigment epithelium (RPE) atrophy is a significant cause of human blindness worldwide, occurring in polygenic diseases such as age-related macular degeneration (AMD) and monogenic diseases such as Stargardt diseases (STGD1) and late-onset retinal degeneration (L-ORD). The patient-induced pluripotent stem cells (iPSCs)-derived RPE (iRPE) model exhibits many advantages in understanding the cellular basis of pathological mechanisms of RPE atrophy. The iRPE model is based on iPSC-derived functionally mature and polarized RPE cells that reproduce several features of native RPE cells, such as phagocytosis of photoreceptor outer segments (POS) and replenishment of visual pigment.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD), the leading cause of central vision loss in the elderly, involves death of the retinal pigment epithelium (RPE) and light-sensing photoreceptors. This multifactorial disease includes contributions from both genetic and environmental risk factors. The current study examined the effect of the Y402H polymorphism of Complement Factor H (CFH, rs1061170) and cigarette smoke, predominant genetic and environmental risk factors associated with AMD.

View Article and Find Full Text PDF

Dual CRALBP isoforms unveiled: iPSC-derived retinal modeling and AAV2/5-RLBP1 gene transfer raise considerations for effective therapy.

Mol Ther

December 2024

Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 34091 Montpellier, France; National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France. Electronic address:

Article Synopsis
  • Inherited retinal diseases (IRDs) cause people to lose their vision slowly, and there are over 270 genes that can cause these problems.
  • One specific gene, RLBP1, leads to different eye disorders depending on changes in that gene, affecting proteins important for seeing.
  • Researchers created a method to treat these disorders using gene therapy, and they discovered a new form of the CRALBP protein that could help improve treatments in both humans and mice.
View Article and Find Full Text PDF

Human iPSC-based disease modeling studies identify a common mechanistic defect and potential therapies for AMD and related macular dystrophies.

Dev Cell

December 2024

Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA. Electronic address:

Article Synopsis
  • Age-related macular degeneration (AMD) and related macular dystrophies (MDs) primarily impact the retinal pigment epithelium (RPE) with drusen deposits being a key feature in the progression of these diseases.
  • The research indicates that reduced activity of matrix metalloproteinase 2 (MMP2) in RPE contributes to drusen formation by causing sterile inflammation and disrupting lipid balance, interacting with specific receptors and molecules.
  • Therapeutic approaches including MMP2 supplementation and inhibiting RAGE and sPLA2-IIA have shown promise in reducing drusen accumulation in patient-derived RPE cells, highlighting a potential treatment pathway for AMD/MDs.
View Article and Find Full Text PDF

The goal of this study was to develop a lot release assay for iPSC residuals following directed differentiation of iPSCs to retinal pigment epithelial (RPE) cells. RNA Sequencing (RNA Seq) of iPSCs and RPE derived from them was used to identify pluripotency markers downregulated in RPE cells. Quantitative real time PCR (qPCR) was then applied to assess iPSC residuals in iPSC-derived RPE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!