Tumor-initiating cells (TICs) play a central role in tumor development, metastasis, and recurrence. In the present study, we investigated the effect of disulfiram (DSF), an inhibitor of aldehyde dehydrogenase, toward tumor-initiating hepatocellular carcinoma (HCC) cells. DSF treatment suppressed the anchorage-independent sphere formation of both HCC cells. Flow cytometric analyses showed that DSF but not 5-fluorouracil (5-FU) drastically reduces the number of tumor-initiating HCC cells. The sphere formation assays of epithelial cell adhesion molecule (EpCAM)(+) HCC cells co-treated with p38-specific inhibitor revealed that DSF suppresses self-renewal capability mainly through the activation of reactive oxygen species (ROS)-p38 MAPK pathway. Microarray experiments also revealed the enrichment of the gene set involved in p38 MAPK signaling in EpCAM(+) cells treated with DSF but not 5-FU. In addition, DSF appeared to downregulate Glypican 3 (GPC3) in a manner independent of ROS-p38 MAPK pathway. GPC3 was co-expressed with EpCAM in HCC cell lines and primary HCC cells and GPC3-knockdown reduced the number of EpCAM(+) cells by compromising their self-renewal capability and inducing the apoptosis. These results indicate that DSF impaired the tumorigenicity of tumor-initiating HCC cells through activation of ROS-p38 pathway and in part through the downregulation of GPC3. DSF might be a promising therapeutic agent for the eradication of tumor-initiating HCC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890271PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0084807PLOS

Publication Analysis

Top Keywords

hcc cells
28
ros-p38 mapk
12
tumor-initiating hcc
12
cells
11
tumor-initiating hepatocellular
8
hepatocellular carcinoma
8
dsf
8
hcc
8
sphere formation
8
self-renewal capability
8

Similar Publications

Background: Hepatocellular carcinoma (HCC) is a ubiquitous malignancy linked to significant mortality. The abnormal expression of β-1,4-N-acetyl-galactosaminyltransferase 1 (B4GALNT1) seemed to be implicated in tumorigenesis. Nonetheless, this enzyme's roles in HCC are unclear.

View Article and Find Full Text PDF

Dynamic communication between hepatocytes and the environment is critical in hepatocellular carcinoma (HCC) development. Clinical immunotherapy against HCC is currently unsatisfactory and needs more systemic considerations, including the identification of new biomarkers and immune checkpoints. Transmembrane 4 L six family member 5 (TM4SF5) is known to promote HCC, but it remains unclear how cancerous hepatocytes avoid immune surveillance and whether avoidance can be blocked.

View Article and Find Full Text PDF

FOXM1 promotes malignant biological behavior and metabolic reprogramming by targeting SPINK1 in hepatocellular carcinoma and affecting the p53 pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu, PR China. Electronic address:

This study investigates the role of SPINK1 in liver cancer and its regulatory relationship with FOXM1. Using differential gene analysis in the GEO database, SPINK1 was identified as overexpressed in liver cancer tissues and associated with poor prognosis, confirmed via PCR. Functional assays demonstrated that SPINK1 knockdown reduced proliferation, migration, and invasion in liver cancer cells, while promoting apoptosis.

View Article and Find Full Text PDF

Macrophages are central to the progression from hepatitis to hepatocellular carcinoma (HCC), with their remarkable plasticity and ability to adapt to the changing liver microenvironment. Chronic inflammation, fibrosis, and ultimately tumorigenesis are driven by macrophage activation, making them key regulators of liver disease progression. This review explores the diverse roles of macrophages in the transition from hepatitis to HCC.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) play important roles in the occurrence and development of hepatocellular carcinoma (HCC) and are a key component of the immunosuppressive microenvironment. However, the origin of CAFs has not been fully elucidated. We employed single-cell sequencing technology to identify the dynamic changes in different subsets of fibroblasts at different time points in rat primary HCC model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!