Melinjo (Gnetum gnemon L.) seed extract (MSE) containing trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) and other derivatives exerts various beneficial effects. However, its mechanism of action in humans remains unknown. In this study, we aimed to investigate beneficial effects of MSE in healthy adult males. In this double-blind, randomized controlled study, 30 males aged 35-70 years with ≤10% flow-mediated dilatation received placebo or 750 mg MSE powder for 8 weeks, and twenty-nine males (45.1 ± 8.8 years old) completed the trial. There was a significant difference in the melinjo and placebo groups. Compared with the placebo control, MSE significantly reduced serum uric acid at 4 weeks and 8 weeks (n = 14 and 15, resp.). HDL cholesterol was significantly increased in the melinjo group. To clarify the mechanism of MSE for reducing uric acid, we investigated xanthine oxidase inhibitory activity, angiotensin II type 1 (AT1) receptor binding inhibition rate, and agonistic activities for PPAR α and PPAR γ . MSE, trans-resveratrol, and a resveratrol dimer, gnetin C (GC), significantly inhibit AT1 receptor binding and exhibit mild agonistic activities for PPAR α and PPAR γ . In conclusion, MSE may decrease serum uric acid regardless of insulin resistance and may improve lipid metabolism by increasing HDL cholesterol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877583PMC
http://dx.doi.org/10.1155/2013/589169DOI Listing

Publication Analysis

Top Keywords

uric acid
16
serum uric
12
melinjo gnetum
8
gnetum gnemon
8
gnemon seed
8
seed extract
8
randomized controlled
8
controlled study
8
mse trans-resveratrol
8
beneficial effects
8

Similar Publications

Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.

Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.

View Article and Find Full Text PDF

A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain.

Brain Res

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:

The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.

View Article and Find Full Text PDF

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases.

Cell Commun Signal

January 2025

Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.

Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!