Unlabelled: The strain diversity of a rubulavirus, parainfluenza virus 5 (PIV5), was investigated by comparing 11 newly determined and 6 previously published genome sequences. These sequences represent 15 PIV5 strains, of which 6 were isolated from humans, 1 was from monkeys, 2 were from pigs, and 6 were from dogs. Strain diversity is remarkably low, regardless of host, year of isolation, or geographical origin; a total of 7.8% of nucleotides are variable, and the average pairwise difference between strains is 2.1%. Variation is distributed unevenly across the PIV5 genome, but no convincing evidence of selection for antibody-mediated evasion in hemagglutinin-neuraminidase was found. The finding that some canine and porcine, but not primate, strains are mutated in the SH gene, and do not produce SH, raised the possibility that dogs (or pigs) may not be the natural host of PIV5. The genetic stability of PIV5 was also demonstrated during serial passage of one strain (W3) in Vero cells at a high multiplicity of infection, under conditions of competition with large proportions of defective interfering genomes. A similar observation was made for a strain W3 mutant (PIV5VΔC) lacking V gene function, in which the dominant changes were related to pseudoreversion in this gene. The mutations detected in PIV5VΔC during pseudoreversion, and also those characterizing the SH gene in canine and porcine strains, predominantly involved U-to-C transitions. This suggests an important role for biased hypermutation via an adenosine deaminase, RNA-specific (ADAR)-like activity.
Importance: Here we report the sequence variation of 16 different isolates of parainfluenza virus 5 (PIV5) that were isolated from a number of species, including humans, monkeys, dogs, and pigs, over 4 decades. Surprisingly, strain diversity was remarkably low, regardless of host, year of isolation, or geographical origin. Variation was distributed unevenly across the PIV5 genome, but no convincing evidence of immune or host selection was found. This overall genome stability of PIV5 was also observed when the virus was grown in the laboratory, and the genome stayed remarkably constant even during the selection of virus mutants. Some of the canine isolates had lost their ability to encode one of the viral proteins, termed SH, suggesting that although PIV5 commonly infects dogs, dogs may not be the natural host for PIV5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993540 | PMC |
http://dx.doi.org/10.1128/JVI.03351-13 | DOI Listing |
Ital J Pediatr
January 2025
Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children's Hospital, IRCSS, Rome, 00165, Italy.
Background: In recent months, Bordetella pertussis has reappeared after maintaining a low rate for many years. Although pertussis is usually characterized by a favorable course, several factors can contribute to the severity of the disease, such as mixed respiratory infections. In this study, we evaluate B.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Department of Veterinary Medicine, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine.
Introduction: Peste des petits ruminants (PPR) is a highly contagious and fatal disease affecting small ruminants, particularly goats and sheep, and is caused by Morbillivirus caprinae, a virus in the genus Morbillivirus, family Paramyxoviridae. PPR has significant economic and social impacts, especially in Africa, Asia, and the Middle East, where small ruminants are vital to rural livelihoods and food security. This disease is a priority for global eradication due to its disproportionate impact on low-income farmers and wildlife conservation.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture (SUA), P.O. Box 3297 Chuo Kikuu, Morogoro, Tanzania.
Introduction: Peste des petits ruminants (PPR) is an infectious disease that imposes substantial economic burdens on small ruminants (SR) production. For Tanzania to develop efficient management and eradication plans, it is essential to comprehend the seroprevalence of PPR designated for global elimination by 2030.
Methodology: This study investigated the prevalence of PPR in animals kept under pastoral and agropastoral communities in Tanzania.
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Neonatology, Children's Hospital of Chongqing Medical University/National Clinical Research Center for Child Health and Disorders/Ministry of Education Key Laboratory of Child Development and Disorders/Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing 400014, China.
Neonates are susceptible to respiratory viral infections, with outbreaks reported in areas with a high population of neonates, such as postpartum care centers and neonatal wards. While specific antiviral drugs are currently available for influenza, symptomatic supportive treatment remains the primary approach for respiratory syncytial virus (RSV), making prevention particularly important. The article closely follows the "Expert recommendations for the prevention of common respiratory viral infections in neonates" and provides an in-depth interpretation of recent breakthroughs in RSV prevention.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Universidad de Ciencias Ambientales y Aplicadas (UDCA), 111166. Bogotá D.C, Bogotá, 111166, Colombia.
Background: Bovine respiratory disease complex (BRDC) is a widely distributed and multifactorial syndrome, leading to significant economic losses to the cattle industry. Many viruses are considered causative agents of BRDC, including bovine herpesvirus 1 (BoHV-1), bovine respiratory syncytial virus (BRSV), and parainfluenza virus 3 (PI-3). This study aimed to determine the seroprevalence of BoHV-1, BRSV, and PI-3 in serum samples collected from cattle in Villavicencio, Colombia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!