Introduction: As a complement to the classic metabolomics biofluid studies, the visualisation of the metabolites contained in cells or tissues could be a very powerful tool to understand how the local metabolism and biochemical pathways could be affected by external or internal stimuli or pathologies. Therefore, extraction and/or lysis is necessary to obtain samples adapted for use with the current analytical tools (liquid NMR and MS). These extraction or lysis work-ups are often the most labour-intensive and rate-limiting steps in metabolomics, as they require accuracy and repeatability as well as robustness. Many of the procedures described in the literature appear to be very time-consuming and not easily amenable to automation.

Objective: To find a fast, simplified procedure that allows release of the metabolites from cells and tissues in a way that is compatible with NMR analysis.

Methods: We assessed the use of sonication to disrupt cell membranes or tissue structures. Both a vibrating probe and an automated bath sonicator were explored.

Results: The application of sonication as the disruption procedure led to reproducible NMR spectral data compatible with metabolomics studies. This method requires only a small biological tissue or cell sample, and a rapid, reduced work-up was applied before analysis. The spectral patterns obtained are comparable with previous, well-described extraction protocols.

Conclusion: The rapidity and the simplicity of this approach could represent a suitable alternative to the other protocols. Additionally, this approach could be favourable for high- throughput applications in intracellular and intratissular metabolite measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.2498DOI Listing

Publication Analysis

Top Keywords

cells tissues
8
easy convenient
4
convenient cell
4
cell tissue
4
extraction
4
tissue extraction
4
extraction protocol
4
protocol nuclear
4
nuclear magnetic
4
magnetic resonance
4

Similar Publications

Purpose: To evaluate visibility of a sub-band posterior to the external limiting membrane (ELM) and assess its age-associated variation.

Methods: In a retrospective cross-sectional study, normal eyes were imaged using a high-resolution spectral-domain optical coherence tomography (SD-OCT) prototype (2.7-µm axial resolution).

View Article and Find Full Text PDF

RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.

View Article and Find Full Text PDF

Quantitative Lipidomics of Biological Samples Using Supercritical Fluid Chromatography Mass Spectrometry.

Methods Mol Biol

January 2025

Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.

Lipidomics has attracted attention in the discovery of unknown biomolecules and for capturing the changes in metabolism caused by genetic and environmental factors in an unbiased manner. However, obtaining reliable lipidomics data, including structural diversity and quantification data, is still challenging. Supercritical fluid chromatography (SFC) is a suitable technique for separating lipid molecules with high throughput and separation efficiency.

View Article and Find Full Text PDF

Objective: Rosmarinic acid (RosA) is a natural polyphenol compound that has been shown to be effective in the treatment of inflammatory disease and a variety of malignant tumors. However, its specific mechanism for the treatment of lung adenocarcinoma (LUAD) has not been fully elucidated. Therefore, this study aims to clarify the mechanism of RosA in the treatment of LUAD by integrating bioinformatics, network pharmacology and in vivo experiments, and to explore the potential of the active ingredients of traditional Chinese medicine in treating LUAD.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!