The radiosynthesis of [(18)F]fluoropyruvate was investigated using numerous precursors were synthesized from ethyl 2,2-diethoxy-3-hydroxypropanoate (5) containing different leaving groups: mesylate, tosylate, triflate, and nonaflate. These precursors were evaluated for [(18)F]fluoride incorporation with triflate being superior. The subsequent hydrolysis step was investigated, and an acidic hydrolysis was optimized. After establishing suitable purification and formulation methods, the [(18)F]fluoropyruvate could be isolated in ca. 50% d.c. yield. The [(18)F]fluoropyruvate was evaluated in vitro for its uptake into tumor cells using adenocarcinomic human alveolar basal epithelial cells (A549) and unfortunately showed an uptake of approximately 0.1% of the applied dose per 100,000 cells after 30 min. Initial pharmacokinetic properties were assessed in vivo using nude mice showed a high degree of bone uptake from defluorination, which will limit its potential as an imaging agent for metabolic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jlcr.3183 | DOI Listing |
J Labelled Comp Radiopharm
March 2014
Bayer Healthcare, Global Drug Discovery, Müllerstrasse 178, 13353, Berlin, Germany.
The radiosynthesis of [(18)F]fluoropyruvate was investigated using numerous precursors were synthesized from ethyl 2,2-diethoxy-3-hydroxypropanoate (5) containing different leaving groups: mesylate, tosylate, triflate, and nonaflate. These precursors were evaluated for [(18)F]fluoride incorporation with triflate being superior. The subsequent hydrolysis step was investigated, and an acidic hydrolysis was optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!