Differential effects of bitter compounds on the taste transduction channels TRPM5 and IP3 receptor type 3.

Chem Senses

Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Herestraat 49, Campus Gasthuisberg, O&N1 Box 802, KU Leuven, B-3000 Leuven, Belgium.

Published: May 2014

Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a Ca(2+)-activated nonselective cation channel involved in the transduction of sweet, bitter, and umami tastes. We previously showed that TRPM5 is a locus for the modulation of taste perception by temperature changes, and by quinine and quinidine, 2 bitter compounds that suppress gustatory responses. Here, we determined whether other bitter compounds known to modulate taste perception also affect TRPM5. We found that nicotine inhibits TRPM5 currents with an effective inhibitory concentration of ~1.3mM at -50 mV. This effect may contribute to the inhibitory effect of nicotine on gustatory responses in therapeutic and experimental settings, where nicotine is often employed at millimolar concentrations. In addition, it implies the existence of a TRPM5-independent pathway for the detection of nicotine bitterness. Nicotine seems to act from the extracellular side of the channel, reducing the maximal whole-cell conductance and inducing an acceleration of channel closure that leads to a negative shift of the activation curve. TRPM5 currents were unaffected by nicotine's metabolite cotinine, the intensive sweetener saccharin or by the bitter xanthines caffeine, theobromine, and theophylline. We also tested the effects of bitter compounds on another essential element of the sweet taste transduction pathway, the type 3 IP3 receptor (IP3R3). We found that IP3R3-mediated Ca(2+) flux is slightly enhanced by nicotine, not affected by saccharin, modestly inhibited by caffeine, theobromine, and theophylline, and strongly inhibited by quinine. Our results demonstrate that bitter compounds have differential effects on key elements of the sweet taste transduction pathway, suggesting for heterogeneous mechanisms of bitter-sweet taste interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chemse/bjt115DOI Listing

Publication Analysis

Top Keywords

bitter compounds
20
taste transduction
12
differential effects
8
effects bitter
8
ip3 receptor
8
cation channel
8
taste perception
8
gustatory responses
8
trpm5 currents
8
caffeine theobromine
8

Similar Publications

Tree peony seeds, traditionally used for edible oil production, are rich in α-linolenic acid (ALA). However, little attention is paid to their development as a healthcare food due to their bitter and astringent taste. The aim of this study was to optimize the debittering process of peony seeds on the basis of maintaining nutritional value and to identify the compounds that cause the taste of bitterness.

View Article and Find Full Text PDF

Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.

View Article and Find Full Text PDF

Linn is a well-known African traditional herb due to its tremendous medicinal and nutritional properties. It is used worldwide for the treatment of different ailments and diseases. In the present study, the phytochemical and antioxidant activity of South African fruit pulp extracts was evaluated.

View Article and Find Full Text PDF

In this study, the effects were explored of digestive enzymes and pH on the bioaccessibility of polyphenols, flavonoids, and antioxidant activities in Hojicha (roasted green tea, RT) infusions during simulated in vitro digestion. Roasting modifies its polyphenolic profile and reduces bitterness, making it a popular variation of green tea. In this study, RT was used for assessing how the roasting-induced changes influenced the tea's bioaccessibility and stability under digestive conditions.

View Article and Find Full Text PDF

Endogenous peptides in Baijiu have primarily focused on finished liquor research, with limited attention given to the peptides in base liquor prior to blending. Liquid chromatography-tandem mass spectrometry (LC-MS) was employed to identify endogenous peptides in the distillates from the first to seventh rounds of soy sauce-flavored Baijiu. Two hundred and five oligopeptides were identified from these distillates, all of which had molecular weights below 1000 Da and were composed of amino acid residues associated with flavor (sweet, sour, and bitter) and biological activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!