Research has demonstrated that certain vaginal gel products--microbicides containing antiretroviral drugs--may reduce HIV infection risk among women. But for vaginal gels to avert HIV and other sexually transmitted infections (STIs), at-risk women must be willing to use them as directed. These products must therefore be "acceptable" to women and an important component of acceptability is users' perception that the product will work to prevent infection. We sought to understand how women's perceptions of vaginal gel properties may shape their understanding of product efficacy for HIV and STI prevention. Sixteen women completed two in-depth qualitative interviews (k = 32) to identify the range and types of sensory perceptions they experienced when using two vaginal gels. We identified emergent themes and linkages between users' sensory perceptions and their beliefs about product efficacy. Users' predictions about product efficacy for preventing infection corresponded to measurable physical properties, including gel volume, location in the vagina, coating behavior, sensation of the gel in the vagina, leakage, and gel changes during coital acts. Although the women described similar sensory experiences (e.g., gel leaked from the vagina), they interpreted these experiences to have varying implications for product efficacy (e.g., leakage was predicted to increase or decrease efficacy). To improve microbicide acceptability, gel developers should investigate and deliberately incorporate properties that influence users' perceptions of efficacy. When a microbicide is approved for use, providers should educate users to anticipate and understand their sensory experiences; improving users' experience can maximize adherence and product effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4327860 | PMC |
http://dx.doi.org/10.1007/s10508-013-0235-5 | DOI Listing |
Cytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
School of Computer Science and Technology, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, China.
Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.
View Article and Find Full Text PDFBone Marrow Transplant
January 2025
Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-, 25000, Besançon, France.
The accessibility of CAR-T cells in centralized production models faces significant challenges, primarily stemming from logistical complexities and prohibitive costs. However, European Regulation EC No. 1394/2007 introduced a pivotal provision known as the hospital exemption.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!