MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3' modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926670PMC
http://dx.doi.org/10.3892/or.2014.2988DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
radiation response
12
cancer cells
8
radiation
8
radiation treatment
8
mirnas
8
response prostate
8
arm selection
8
selection preference
8
mirnas expression
8

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

Background: Most cancer survivors have multiple cardiovascular risk factors, increasing their risk of poor cardiovascular and cancer outcomes. The Automated Heart-Health Assessment (AH-HA) tool is a novel electronic health record clinical decision support tool based on the American Heart Association's Life's Simple 7 cardiovascular health (CVH) metrics to promote CVH assessment and discussion in outpatient oncology. Before proceeding to future implementation trials, it is critical to establish the acceptability of the tool among providers and survivors.

View Article and Find Full Text PDF

Purpose: Artificially Intelligent (AI) chatbots have the potential to produce information to support shared prostate cancer (PrCA) decision-making. Therefore, our purpose was to evaluate and compare the accuracy, completeness, readability, and credibility of responses from standard and advanced versions of popular chatbots: ChatGPT-3.5, ChatGPT-4.

View Article and Find Full Text PDF

Design and Discovery of Preclinical Candidate LYG-409 as a Highly Potent and Selective GSPT1 Molecular Glue Degraders.

J Med Chem

January 2025

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China.

Molecular glue degraders induce "undruggable" protein degradation by a proximity-induced effect. Inspired by the clinical success of immunomodulatory drugs, we aimed to design novel molecular glue degraders targeting GSPT1. Here, we report the design of a series of GSPT1 molecular glue degraders.

View Article and Find Full Text PDF

Purpose: Actinium-225 labeled prostate-specific membrane antigen (PSMA) targeted radionuclide therapy has emerged as a potential treatment option in the management of men with metastatic castrate-resistant prostate cancer (mCRPC). This study investigated molecular imaging-derived parameters and compared imaging response of lesions categorized by tumor site.

Methods: Men with mCRPC treated with [225Ac]Ac-J591 from 2017 to 2022 at our center on two prospective trials (NCT03276572 and NCT04506567) with pre- and post-treatment [68Ga]Ga-PSMA-11 Positron Emission Tomography (PET) imaging studies available were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!