Nano-branched TiO2 arrays were fabricated on fluorine-doped tin oxide (FTO) glass by a facile two-step chemical synthesis process. Self-powered UV photodetectors based on photoelectrochemical cells (PECs) were assembled using these TiO2 nano-branched arrays as photoanodes. These visible-blind self-powered UV photodetectors exhibit high sensitivity and high-speed photoresponse. Compared with photodetectors based on bare TiO2 nanorod arrays, TiO2 nano-branched arrays show drastically improved photodetecting performance as photoanodes. The photosensitivity increases from 0.03 to 0.22 A W(-1) when optimized nano-branched TiO2 arrays are used, corresponding to an incident photon-to-current conversion efficiency higher than 77%. The UV photodetectors also exhibit excellent spectral selectivity and fast response (0.05 s decay time). The improved performance is attributed to a markedly enlarged TiO2/electrolyte contact area and good electron conductivity in the one-dimensional, well-aligned TiO2 nanorod trunk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/25/7/075202 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physics, Jadavpur University, Kolkata 700032, India.
Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
Cellulose is attracting considerable attention in the field of flexible electronics due to its unique properties and environmental sustainability, particularly as a substrate for flexible devices. Flexible photodetectors are an integral part of cellulose-based devices and have become essential in optical communication, heart rate monitoring, and imaging systems. The performance and adaptability of these photodetectors depend significantly on the quality of the flexible substrates.
View Article and Find Full Text PDFSmall Methods
January 2025
Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, P. R. China.
2D hybrid perovskites have attracted great interest due to their promising potential in photodetectors. The phase structure, dielectric, and excitonic properties in 2D perovskites play a pivotal role in the performance of the corresponding optoelectronic device. Here a lattice anchoring method is demonstrated to boost carrier mobility in 2D perovskites by tailoring large organic spacer cation layers.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yutian Road 500, Shanghai, 200083, China.
ACS Appl Mater Interfaces
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!