Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4739506 | PMC |
http://dx.doi.org/10.1038/nchem.1830 | DOI Listing |
Nat Genet
January 2025
Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant.
View Article and Find Full Text PDFNat Food
January 2025
School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
For commercial viability, cultivated meats require scientifically informed approaches to identify and manage hazards and risks. Here we discuss food safety in the rapidly developing field of cultivated meat as it shifts from lab-based to commercial scales. We focus on what science-informed risk mitigation processes can be implemented from neighbouring fields.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Department of Food Research, Faculty of Chemical Sciences, Universidad Autónoma de Coahuila, Blvd. V. Carranza e Ing. José Cárdenas s/n Col. República C.P., Saltillo, Coahuila, 25280, Mexico.
Objective Of The Review: Edible mushrooms are found to be foods with high nutritional content, which have been shown to be more widely used ingredients in cooking in traditional dishes. This article explores the rising trend in the use of edible mushrooms in new formulations of functional foods, taking advantage of their properties and benefits in human health.
Recent Findings: The use of mushrooms as an ingredient in new or modified food formulations is driven by solid evidence of their nutritional content and bioactivity.
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
The removal of toxic nitrophenols from the industrial wastewater is urgently needed from health, environmental and economic aspects. The present study deals with the synthesis of crosslinked vinyl polymer Poly(divinylbenzene) (poly(DVB)) through free radical polymerization technique using AIBN as initiator and acetonitrile as solvent. The prepared polymer was used as a support for silver nanoparticles via chemical reduction of silver nitrate on the polymer network.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, China.
Photocatalytic overall water splitting is a promising approach for a sustainable hydrogen provision using solar energy. For sufficient solar energy utilization, this reaction ought to be operated based on visible-light-active semiconductors, which is very challenging. In this work, an F-expedited nitridation strategy is applied to modify the wide-bandgap semiconductor SrTiO for visible-light-driven photocatalytic overall water splitting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!