Energy-efficient communication is one of the main concerns of wireless sensor networks nowadays. A commonly employed approach for achieving energy efficiency has been the use of duty-cycled operation of the radio, where the node's transceiver is turned off and on regularly, listening to the radio channel for possible incoming communication during its on-state. Nonetheless, such a paradigm performs poorly for scenarios of low or bursty traffic because of unnecessary activations of the radio transceiver. As an alternative technology, Wake-up Radio (WuR) systems present a promising energy-efficient network operation, where target devices are only activated in an on-demand fashion by means of a special radio signal and a WuR receiver. In this paper, we analyze a novel wake-up radio approach that integrates both data communication and wake-up functionalities into one platform, providing a reconfigurable radio operation. Through physical experiments, we characterize the delay, current consumption and overall operational range performance of this approach under different transmit power levels. We also present an actual single-hop WuR application scenario, as well as demonstrate the first true multi-hop capabilities of a WuR platform and simulate its performance in a multi-hop scenario. Finally, by thorough qualitative comparisons to the most relevant WuR proposals in the literature, we state that the proposed WuR system stands out as a strong candidate for any application requiring energy-efficient wireless sensor node communications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3926545PMC
http://dx.doi.org/10.3390/s140100022DOI Listing

Publication Analysis

Top Keywords

wake-up radio
12
wireless sensor
12
radio
8
energy-efficient wireless
8
sensor networks
8
wur
6
performance evaluation
4
evaluation comparative
4
comparative analysis
4
analysis subcarrier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!