Background: Several observational studies have investigated autoimmune disease and subsequent risk of monoclonal gammopathy of undetermined significance (MGUS) and multiple myeloma. Findings have been largely inconsistent and hindered by the rarity and heterogeneity of the autoimmune disorders investigated. A systematic review of the literature was undertaken to evaluate the strength of the evidence linking prior autoimmune disease and risk of MGUS/multiple myeloma.
Methods: A broad search strategy using key terms for MGUS, multiple myeloma, and 50 autoimmune diseases was used to search four electronic databases (PubMed, Medline, Embase, and Web of Science) from inception through November 2011.
Results: A total of 52 studies met the inclusion criteria, of which 32 were suitably comparable to perform a meta-analysis. "Any autoimmune disorder" was associated with an increased risk of both MGUS [n = 760 patients; pooled relative risk (RR) 1.42; 95% confidence interval (CI), 1.14-1.75] and multiple myeloma (n>2,530 patients; RR 1.13, 95% CI, 1.04-1.22). This risk was disease dependent with only pernicious anemia showing an increased risk of both MGUS (RR 1.67; 95% CI, 1.21-2.31) and multiple myeloma (RR 1.50; 95% CI, 1.25-1.80).
Conclusions: Our findings, based on the largest number of autoimmune disorders and patients with MGUS/multiple myeloma reported to date, suggest that autoimmune diseases and/or their treatment may be important in the etiology of MGUS/multiple myeloma. The strong associations observed for pernicious anemia suggest that anemia seen in plasma cell dyscrasias may be of autoimmune origin.
Impact: Underlying mechanisms of autoimmune diseases, general immune dysfunction, and/or treatment of autoimmune diseases may be important in the pathogenesis of MGUS/multiple myeloma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1055-9965.EPI-13-0695 | DOI Listing |
Pharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.
Methylenebisphosphonic derivatives including hydroxy-methylenebisphosphonic species may be of potential biological activity, and a part of them is used in the treatment of bone diseases. Methylenebisphosphonates may be obtained by the Michaelis-Arbuzov reaction of suitably α-substituted methylphosphonates and trialkyl phosphites or phosphinous esters, while the hydroxy-methylene variations are prepared by the Pudovik reaction of α-oxophosphonates and different >P(O)H reagents, such as diethyl phosphite and diarylphosphine oxides. After converting α-hydroxy-benzylphosphonates and -phosphine oxides to the α-halogeno- and α-sulfonyloxy derivatives, they were utilized in the Michaelis-Arbuzov reaction with trialkyl phosphites and ethyl diphenylphosphinite to afford the corresponding bisphosphonate, bis(phosphine oxide) and phosphonate-phosphine oxide derivatives.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Hematology, Theagenion Cancer Hospital, 54639 Thessaloniki, Greece.
Multiple Myeloma (MM) is a complex hematological malignancy characterized by the clonal proliferation of malignant plasma cells within bone marrow (BM) [...
View Article and Find Full Text PDFCancers (Basel)
January 2025
Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, Ayios Dometios, 2371 Nicosia, Cyprus.
Background: The accurate staging of multiple myeloma (MM) is essential for optimizing treatment strategies, while predicting the progression of asymptomatic patients, also referred to as monoclonal gammopathy of undetermined significance (MGUS), to symptomatic MM remains a significant challenge due to limited data. This study aimed to develop machine learning models to enhance MM staging accuracy and stratify asymptomatic patients by their risk of progression.
Methods: We utilized gene expression microarray datasets to develop machine learning models, combined with various data transformations.
Cancers (Basel)
January 2025
Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
Algae are a rich source of bioactive compounds that have a wide range of beneficial effects on human health and can show significant potential in the treatment of hematological malignancies such as leukemia, lymphoma, and multiple myeloma. These diseases often pose a therapeutic challenge despite recent advances in treatment (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!