In this article, a clean method for the synthesis of PtPd/reduced graphene oxide (RGO) catalysts with different Pt/Pd ratios is reported in which no additional components such as external energy (e.g., high temperature or high pressure), surfactants, or stabilizing agents are required. The obtained catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), induced coupled plasma atomic emission spectroscopy (ICP-AES), and electrochemical measurements. The HRTEM measurements showed that all of the metallic nanoparticles (NPs) exhibited well-defined crystalline structures. The composition of these Pt-Pd/RGO catalysts can be easily controlled by adjusting the molar ratio of the Pt and Pd precursors. Both cyclic voltammetry (CV) and chronoamperometry (CA) results demonstrate that bimetallic PtPd catalysts have superior catalytic activity for the ethanol oxidation reaction compared to the monometallic Pt or Pd catalyst, with the best performance found with the PtPd (1:3)/RGO catalyst. The present study may open a new approach for the synthesis of PtPd alloy catalysts, which is expected to have promising applications in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am405846hDOI Listing

Publication Analysis

Top Keywords

clean method
8
method synthesis
8
activity ethanol
8
ethanol oxidation
8
transmission electron
8
electron microscopy
8
catalysts
5
synthesis reduced
4
reduced graphene
4
graphene oxide-supported
4

Similar Publications

Some large social environments are expected to use Covered Path Planning (CPP) methods to handle daily tasks such as cleaning and disinfection. These environments are usually large in scale, chaotic in structure, and contain many obstacles. The proposed method is based on the improved SCAN-STC (Spanning Tree Coverage) method and significantly reduces the solution time by optimizing the backtracking module of the algorithm.

View Article and Find Full Text PDF

In this study, polysulfone/polyvinylpyrrolidone (PSf/PVP, 20 wt%/5 wt%)-based ultrafiltration (UF) membranes reinforced with different ratios (0.5 and 1 wt%) of cellulose nanocrystals (CNCs) and cellulose nanofibres (CNFs) were prepared by the phase inversion method. The effect of CNC, CNF, and CNC-CNF reinforcement on the morphology, roughness, crystallinity, porosity, average pore size, mechanical properties, and filtration performance of PSf/PVP-based membrane was investigated.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are contaminants that can lead to adverse health effects in aquatic organisms, including reproductive toxicity and developmental abnormalities. To assess the ecological health risk of PFAS in Pennsylvania stream surface water, we conducted a comprehensive analysis that included both measured and predicted estimates. The potential combined exposure effects of 14 individual PFAS to aquatic biota were estimated using the sum of exposure-activity ratios (ΣEARs) in 280 streams.

View Article and Find Full Text PDF

Analysis of Plasticizer Contamination Throughout Olive Oil Production.

Molecules

December 2024

LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.

This study monitored the contamination of 32 plasticizers in olive oil throughout the production and storage process. Samples were collected at different stages of production from three olive oil production lines in distinct regions of Portugal and analyzed for 23 phthalates and 9 phthalates substitutes to identify contamination sources. The developed analytical method employed liquid-liquid extraction with hexane/methanol (1:4, /), followed by centrifugation, extract removal, and freezing as a clean-up step.

View Article and Find Full Text PDF

Silicon Extraction from a Diamond Wire Saw Silicon Slurry with Flotation and the Flotation Interface Behavior.

Molecules

December 2024

Faculty of Metallurgical and Energy Engineering/National Engineering Research Center of Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, China.

Diamond wire saw silicon slurry (DWSSS) is a waste resource produced during the process of solar-grade silicon wafer preparation with diamond wire sawing. The DWSSS contains 6N grade high-purity silicon and offers a promising resource for high-purity silicon recycling. The current process for silicon extraction recovery from DWSSS presents the disadvantages of lower recovery and secondary pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!