AI Article Synopsis

  • Mesoporous zeolites like Beta-MS are effective catalysts for converting large molecules, thanks to their ability to allow fast mass transfer and their selective structure.* -
  • Researchers successfully synthesized Beta-MS using a commercial cationic polymer as a template to create both micropores and mesopores, marking a novel approach as no surfactant was used.* -
  • The resulting Beta-MS particles were found to be single crystals with better stability and higher catalytic activity compared to traditional surfactant-derived zeolites, making them promising for acid-catalyzed reactions.*

Article Abstract

Mesoporous zeolites are useful solid catalysts for conversion of bulky molecules because they offer fast mass transfer along with size and shape selectivity. We report here the successful synthesis of mesoporous aluminosilicate zeolite Beta from a commercial cationic polymer that acts as a dual-function template to generate zeolitic micropores and mesopores simultaneously. This is the first demonstration of a single nonsurfactant polymer acting as such a template. Using high-resolution electron microscopy and tomography, we discovered that the resulting material (Beta-MS) has abundant and highly interconnected mesopores. More importantly, we demonstrated using a three-dimensional electron diffraction technique that each Beta-MS particle is a single crystal, whereas most previously reported mesoporous zeolites are comprised of nanosized zeolitic grains with random orientations. The use of nonsurfactant templates is essential to gaining single-crystalline mesoporous zeolites. The single-crystalline nature endows Beta-MS with better hydrothermal stability compared with surfactant-derived mesoporous zeolite Beta. Beta-MS also exhibited remarkably higher catalytic activity than did conventional zeolite Beta in acid-catalyzed reactions involving large molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja411117yDOI Listing

Publication Analysis

Top Keywords

zeolite beta
16
mesoporous zeolites
12
cationic polymer
8
dual-function template
8
mesoporous
5
highly mesoporous
4
mesoporous single-crystalline
4
zeolite
4
single-crystalline zeolite
4
beta
4

Similar Publications

Lactic acid is an important platform feedstock for synthesizing various chemicals. Lactic acid is normally converted from any sugar such as glucose, and Sn-β zeolite is an effective catalyst. In this study, β zeolite with different Si/Al ratios was prepared and characterized.

View Article and Find Full Text PDF

The efficient conversion of long-chain linear α-olefins (LAOs) into industrially useful epoxides is of pivotal importance. Mukaiyama epoxidation based on the use of molecular oxygen as the sole oxidant and aldehyde as the cosubstrate offers a promising route for LAOs epoxidation. However, challenges associated with epoxide forming selectivity and aldehyde coupling efficiency have long impeded the adoption of Mukaiyama epoxidation in large-scale applications.

View Article and Find Full Text PDF

Study of the zeolite-catalyzed isomerization of 1-methylnaphthalene.

RSC Adv

December 2024

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University Beijing 100084 P. R. China

Isomerization of 1-methylnaphthalene (1-MN) to 2-methylnaphthalene (2-MN) is a crucial step in the production of 2,6-dimethylnaphthalene (2,6-DMN), which is an important raw material for polyethylene naphthalate (PEN). Herein, the isomerization of 1-MN was systemically investigated over beta zeolite. Firstly, reaction conditions were systemically optimized, by which enhanced catalytic performance was obtained.

View Article and Find Full Text PDF

Catalytic performance of Pd catalyst supported on CeO or ZrO modified beta zeolite for methane oxidation.

J Environ Sci (China)

June 2025

School of Rare Earths, University of Science and Technology of China, Hefei 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Two kinds of oxide-zeolite composite support, Ce-beta and Zr-beta were prepared by a simple wet impregnation method and adopted for the preparation of palladium-based catalysts for catalytic oxidation of methane. The Pd/6.8Zr-beta catalyst showed superior methane oxidation performance, achieving T and T of 417 °C and 451 °C, respectively, together with robust hydrothermal stability.

View Article and Find Full Text PDF

C branched saturated fatty acids (BSFA) are used as ingredients in cosmetics and lubricants and are produced the hydrogenation of C branched unsaturated fatty acids (BUFA). Industrial-grade C BUFA contain the odorous by-product γ-stearolactone (GSL), which must be removed by acid-catalysed ring-opening of GSL into oleic acid. Zeolites such as Y and beta can facilitate the ring-opening, but due to the dimensions of GSL the activity is expected to be limited by diffusion into the micropores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!