Tight junction regulation through vesicle trafficking: bringing cells together.

Biochem Soc Trans

*School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Published: February 2014

Epithelial layers are integral for many physiological processes and are maintained by intercellular adhesive structures. During disease, these structures can disassemble, leading to breakdown of epithelia. TJs (tight junctions) are one type of intercellular adhesion. Loss of TJs has been linked to the pathogenesis of many diseases. The present review focuses on the role of vesicle trafficking in regulation of TJs, in particular trafficking of the TJ protein occludin. We examine how endocytosis and endosomal recycling modulate occludin localization under steady-state conditions and during stimulated TJ disassembly.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST20130162DOI Listing

Publication Analysis

Top Keywords

vesicle trafficking
8
tight junction
4
junction regulation
4
regulation vesicle
4
trafficking bringing
4
bringing cells
4
cells epithelial
4
epithelial layers
4
layers integral
4
integral physiological
4

Similar Publications

The dysfunction of dopaminergic (DA) neurons is central to Parkinson's disease. Distinct synaptic vesicle (SV) populations, differing in neurotransmitter content (dopamine vs. glutamate), may vary due to differences in trafficking and exocytosis.

View Article and Find Full Text PDF

Isolation, Characterization, and Proteomic Analysis of Crude and Purified Extracellular Vesicles Extracted from f. sp. .

Plants (Basel)

December 2024

Key Laboratory of South Subtropical Fruit Biology and Genetic Research Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

Extracellular vesicles (EVs) produced by f. sp. () play vital roles in plant-pathogen interactions; however, the isolation of purified TR4-EVs and their pathogenicity and proteomic profiles are not well studied.

View Article and Find Full Text PDF

Apolipoprotein-L Functions in Membrane Remodeling.

Cells

December 2024

Laboratory of Molecular Parasitology, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, 6041 Gosselies, Belgium.

The mammalian Apolipoprotein-L families (APOLs) contain several isoforms of membrane-interacting proteins, some of which are involved in the control of membrane dynamics (traffic, fission and fusion). Specifically, human APOL1 and APOL3 appear to control membrane remodeling linked to pathogen infection. Through its association with Non-Muscular Myosin-2A (NM2A), APOL1 controls Golgi-derived trafficking of vesicles carrying the lipid scramblase Autophagy-9A (ATG9A).

View Article and Find Full Text PDF

Little brown bats () cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms.

View Article and Find Full Text PDF

The transmembrane protein Synapse Differentiation Induced Gene 4 (SynDIG4) functions as an auxiliary factor of AMPA receptors (AMPARs) and plays a critical role in excitatory synapse plasticity as well as hippocampal-dependent learning and memory. Mice lacking SynDIG4 have reduced surface expression of GluA1 and GluA2 and are impaired in single tetanus-induced long-term potentiation and NMDA receptor (NMDAR)-dependent long-term depression. These findings suggest that SynDIG4 may play an important role in regulating AMPAR distribution through intracellular trafficking mechanisms; however, the precise roles by which SynDIG4 governs AMPAR distribution remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!