Enzymatic formation of PEGylated oligonucleotides.

Bioconjug Chem

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy.

Published: February 2014

Gene therapy, siRNA, and therapeutic aptamers attract great interest owing to their versatility to treat a wide range of diseases and their potential high selectivity. Unfortunately, oligonucleotide-based therapeutics suffer rapid degradation by nucleases, scarce cell internalization, and fast kidney clearance. To address these limitations, the covalent attachment by mild chemical reactions of an activated polyethylene glycol (PEG) is widely used to obtain PEGylated nucleic acids showing a more favorable pharmacokinetic profile. We describe here a method for the enzymatic formation of PEGylated nucleic acids employing T4 DNA ligase: the ligation protocol was set up and optimized allowing the complete achievement of PEGylated oligonucleotides amenable to further enzymatic reactions. The feasibility of this approach for bioconjugation was demonstrated employing a set of PEG-donors and oligonucleotide acceptors, differing in the chemical link between PEG and the oligonucleotide donor, and in the length, sequence, and structure of the oligonucleotides employed. The ligase reaction allowed us to obtain double-stranded as well as single-stranded oligonucleotides, thus demonstrating the applicability of the method to a variety of substrates suitable for diagnostic and therapeutic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc400569zDOI Listing

Publication Analysis

Top Keywords

enzymatic formation
8
formation pegylated
8
pegylated oligonucleotides
8
pegylated nucleic
8
nucleic acids
8
pegylated
4
oligonucleotides
4
oligonucleotides gene
4
gene therapy
4
therapy sirna
4

Similar Publications

Insectary plants, such as sweet alyssum, coriander, and white mustard, are well known for their traits that attract beneficial insects, allowing them to protect crops from pests. The aim of the study was to analyze the compounds that are important in the antioxidant response, such as malondialdehyde, ascorbic acid, proline, total phenolics, and total flavonoids, as well as the content of elements, including macroelements (K, Mg, Na, Ca, P, and S) and heavy metals (Cd, Cu, Zn, Pb, Ni, Mn, and Fe) in broad bean plants. These plants were grown in field conditions as the main protected plant alongside a mixture of three insectary plants at different proportions of the individual components.

View Article and Find Full Text PDF

C-S lyase is a crucial enzyme responsible for the formation of sulfur-containing flavor compounds in . We investigated the involvement of C-S lyase in the synthesis of ergothioneine (EGT) in , a high-producing edible mushroom. Through experimental and computational approaches, we identified 2, a C-S lyase, as a key enzyme involved in EGT synthesis in .

View Article and Find Full Text PDF

A Comparison of the Electronic Properties of Selected Antioxidants Vitamin C, Uric Acid, NAC and Melatonin with Guanosine Derivatives: A Theoretical Study.

Molecules

December 2024

DNA Damage Laboratory of the Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland.

Each cell in the human body is continually exposed to harmful external and internal factors. During evolution, cells have developed various defence systems, divided into enzymatic and non-enzymatic types, to which low-weight molecule antioxidants belong. In this article, the ionisation potential and electron affinity, as well as global reactivity descriptors of Vitamin C, Melatonin, Uric Acids, and N-acetyl-L-cysteine, were theoretically investigated at the MP-2/aug-cc-pVTZ level of theory in the condensed (aqueous) phase.

View Article and Find Full Text PDF

Gamma-aminobutyric acid (GABA) has been attributed to health-promoting properties and has received attention from the food industry as an attractive bioactive compound for the development of functional foods. Some lactic acid bacteria (LAB) produce GABA through a glutamate decarboxylase encoded by B and a glutamate/GABA antiporter encoded by C. In this study, we develop a molecular screening method based on a polymerase chain reaction able to detect those genes in different LAB species through the use of novel multispecies primers.

View Article and Find Full Text PDF

Five phenolic Schiff bases (-) incorporating a fragment of methanesulfonamide were synthesized and evaluated for their efficacy as antitumor agents. Compounds and demonstrated the most potent antitumor action, with a positive cytotoxic effect (PCE) of 54/59 and 59/59 and a mean growth percentage (MG%) of 67.3% and 19.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!