Background: Besides sensorineural factors, conductive impediments likely contribute to olfactory losses in chronic rhinosinusitis (CRS) patients, yet no conclusive evidence exists. We aimed to examine possible conductive factors using computational fluid dynamics (CFD) models.
Methods: A total of 29 CRS patients were assessed via odorant detection thresholds (ODTs), rhinomanometry (nasal resistance [NR]), acoustic rhinometry (minimum-cross-sectional area [MCA]) and computed tomography (CT) staging. CFD simulations of nasal airflow and odorant absorption to olfactory region were carried out based on individual CTs. Biopsies of olfactory epithelium (OE) were collected, cryosectioned, stained, and scored for erosion.
Results: Significant correlations to ODTs were found for 3 variables: odor absorption in the olfactory region (r = -0.60, p < 0.01), MCA (r = -0.40, p < 0.05), and CT staging (r = 0.42, p < 0.05). However, significant findings were limited to ODTs of the highly soluble l-carvone. Multiple regression analysis revealed that these variables combined, with the addition of NR, can account for 65% of the total variance in ODTs. CT staging correlated significantly with OE erosion (r = 0.77, p < 0.01) and can replace the latter in the regression with comparable outcomes. Partial correlations suggest the contributions of both conductive and sensorineural variables are more prominent if adjusted for the effects of the other. Olfactory loss and inflammatory factors have strong bilateral involvement, whereas conductive factors are independent between sides. As validation, CFD-simulated NRs significantly correlated with rhinomanometrically assessed NRs (r = 0.60, p < 0.01).
Conclusion: Both conductive and sensorineural mechanisms can contribute to olfactory losses in CRS. CFD modeling provides critical guidance in understanding the role of conductive impediments in olfactory dysfunction in CRS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4144185 | PMC |
http://dx.doi.org/10.1002/alr.21272 | DOI Listing |
J Chem Ecol
January 2025
Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.
Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China.
Background: The invasion of Spodoptera frugiperda into China has caused serious losses to the food industry and has developed varying degrees of resistance to various chemical pesticides. Developing new plant-based pesticides is of great significance for the sustainable management of S. frugiperda.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Postharvest Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
This study assessed the factors contributing to postharvest loss of fish around the Fincha'a, Amarti, and Nashe reservoirs in Horro Guduru Wollega, Oromia, Western Ethiopia, using semi-structured questionnaires from January, 2022 GC onward. The aim of the finding was to know the fish handling and post-harvest preservation of fish around the reservoirs. In the study area, 320 respondents were selected using a random sampling system.
View Article and Find Full Text PDFFood Res Int
January 2025
IRTA-Food Quality and Technology, Finca Camps i Armet, 17121 Monells, Girona, Spain. Electronic address:
This study investigates quality changes occurred in sliced pork belly with different fat content during refrigerated storage, and the potential of spectral imaging technology in predicting quality properties. Pork bellies with different fat levels (low 'LF', medium 'MF' and high 'HF') were selected from slaughtering houses and directly transferred to the laboratory. The sliced bellies were packed in modified atmosphere packages with high oxygen levels (80 %) and the essential visual and olfactory characteristics, microbiological load, pH, lipid oxidation and colour values were assessed throughout 20 days of refrigerated storage.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China. Electronic address:
Bradysia odoriphaga (Diptera: Sciaridae) is a devastating underground pest that can cause serious economic losses. Odorant binding proteins (OBPs) are crucial components of the insect olfactory system, playing key roles in locating host plants, oviposition sites, and mates. Therefore, they are considered potential targets for pest control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!