Glutamine, the most abundant amino acid in the human body, plays several important roles in the intestine. Previous studies showed that glutamine may affect protein expression by regulating ubiquitin-proteasome system. We thus aimed to evaluate the effects of glutamine on ubiquitinated proteins in human duodenal mucosa. Five healthy male volunteers were included and received during 5 h, on two occasions and in a random order, either an enteral infusion of maltodextrins alone (0.25 g kg(-1) h(-1), control), mimicking carbohydrate-fed state, or maltodextrins with glutamine (0.117 g kg(-1) h(-1), glutamine). Endoscopic duodenal biopsies were then taken. Total cellular protein extracts were separated by 2D gel electrophoresis and analyzed by an immunodetection using anti-ubiquitin antibody. Differentially ubiquitinated proteins were then identified by liquid chromatography-electrospray ionization MS/MS. Five proteins were differentially ubiquitinated between control and glutamine conditions. Among these proteins, we identified two chaperone proteins, Grp75 and hsp74. Grp75 was less ubiquitinated after glutamine infusion compared with control. In contrast, hsp74, also called Apg-2, was more ubiquitinated after glutamine. In conclusion, we provide evidence that glutamine may regulate ubiquitination processes of specific proteins, i.e., Grp75 and Apg-2. Grp75 has protective and anti-inflammatory properties, while Apg-2 indirectly regulates stress-induced cell survival and proliferation through interaction with ZO-1. Further studies should confirm these results in stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00726-014-1670-x | DOI Listing |
Nutrients
January 2025
Department of Pediatrics, Buzzi Children's Hospital, 20154 Milan, Italy.
Background: The metabolism of plasma amino acid (AA) in children with autism spectrum disorder (ASD) has been extensively investigated, yielding inconclusive results. This study aims to characterize the metabolic alterations in AA profiles among early-diagnosed children with ASD and compare the findings with those from non-ASD children.
Methods: We analyzed plasma AA profiles, measured by ion exchange chromatography, from 1242 ASD children (median age = 4 years; 81% male).
Pathogens
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31.
View Article and Find Full Text PDFInsects
January 2025
College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Thermal condition affects the development and growth of ectotherms. The stenothermic honeybee brood, particularly the prepupae, are sensitive to low rearing temperature. The fat body plays important roles in energy reserve and metabolism during the honeybee brood development.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
School of Biology and Biological Engineering, South China University of Technology, University Town, Guangzhou 510006, China.
Prostate cancer is one of the most common malignancies affecting men worldwide and a leading cause of cancer-related mortality, necessitating a deeper understanding of its underlying biochemical pathways. Similar to other cancer types, prostate cancer is also characterised by aberrantly activated metabolic pathways that support tumour development, such as amino acid metabolism, which is involved in modulating key physiological and pathological cellular processes during the progression of this disease. The metabolism of several amino acids, such as glutamine and methionine, crucial for tumorigenesis, is dysregulated and commonly discussed in prostate cancer.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
Glutamine metabolism is essential for infectious spleen and kidney necrosis virus (ISKNV) replication. Glutaminase 1 (GLS1), the key enzyme of the glutamine metabolism, and c-Myc positively regulate ISKNV infection, while c-Myc is closely correlated with GLS1. However, the regulatory mechanism among ISKNV, c-Myc and glutamine metabolism remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!