Four novel quaternary ammonium dimethacrylate monomers named IMQ (side alkyl chain length from 12 to 18) were synthesized with the aim to synthesize dental resin with antibacterial activity. All of IMQs were added into bis-GMA/TEGDMA dental resin system with a series of mass ratio (5, 10, and 20 wt%), double bond conversion (DC), flexural strength (FS), modulus of elasticity (FM) and biofilm formation inhibitory effect were studied. According to the results of DC, FS, FM, and the biofilm inhibitory effect, IMQ-16 containing polymer had the best comprehensive properties, and the optimal concentration of IMQ-16 in bis-GMA/TEGDMA dental resin would be in the range of 5-10 wt%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-014-5156-xDOI Listing

Publication Analysis

Top Keywords

dental resin
16
bis-gma/tegdma dental
12
quaternary ammonium
8
ammonium dimethacrylate
8
resin system
8
antibacterial activity
8
optimizing concentration
4
concentration quaternary
4
dimethacrylate monomer
4
monomer bis-gma/tegdma
4

Similar Publications

Background: In recent years, there have been suggestions for new restorative strategies that aim to effectively utilize modern adhesive technologies and protect the remaining intact tooth structure. This study was conducted to evaluate the clinical performance of fiber reinforced resin composites in restoring Class II MOD cavities over 18 months.

Methods: Forty-five participants with class II MOD cavities were randomly enrolled.

View Article and Find Full Text PDF

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

Robot-assisted Endodontic Retreatment: A Case Report with Clinical Considerations.

J Endod

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address:

Introduction: Fiber posts present significant challenges for nonsurgical endodontic retreatment, as improper removal may result in iatrogenic root perforation or even root fracture. Recently, robotic technology has attracted considerable attention in dentistry and active dental robotic (ADR) systems can perform procedures based on preset instructions, minimizing reliance on the dentist's experience. This case report describes the application of an ADR system for fiber post removal through an existing zirconia crown.

View Article and Find Full Text PDF

Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.

View Article and Find Full Text PDF

Effect of a chemically-modified-curcumin on dental resin biodegradation.

Front Oral Health

January 2025

Department of General Dentistry, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States.

Introduction: Previous studies have shown () esterase is a key mediator of dental composite biodegradation, which can contribute to recurrent caries. This study is to investigate the inhibitory effects of a novel Chemically-Modified-Curcumin (CMC 2.24) on esterase activities and related dental material biodegradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!