AI Article Synopsis

Article Abstract

A new enantioselective synthetic method for α-halo-α-alkylmalonates is reported. α-Alkylation of diphenylmethyl tert-butyl α-halomalonates under phase-transfer catalytic conditions (solid KOH, toluene, -40 °C) in the presence of (S,S)-3,4,5-trifluorophenyl-NAS bromide (5 mol%) afforded diphenylmethyl tert-butyl α-halo-α-alkylmalonates in very high chemical yields (up to 99%) and optical yields (up to 93% ee).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob42107dDOI Listing

Publication Analysis

Top Keywords

phase-transfer catalytic
8
diphenylmethyl tert-butyl
8
enantioselective synthesis
4
synthesis α-halo-α-alkylmalonates
4
α-halo-α-alkylmalonates phase-transfer
4
catalytic α-alkylation
4
α-alkylation enantioselective
4
enantioselective synthetic
4
synthetic method
4
method α-halo-α-alkylmalonates
4

Similar Publications

Designing mechanically robust one-component nanocomposites via hyperbranched cellulose nanofibril grafted vegetable oil polymers.

Carbohydr Polym

March 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), No 16, Suojin Wucun, Nanjing, China. Electronic address:

Achieving effective interfacial compatibility between hydrophilic cellulose nanofibrils (CNFs) and hydrophobic vegetable oil polymers (VOPs) remained a significant challenge. To address this issue, we developed a one-component nanocomposite (OCN) based on hyperbranched CNF-grafted VOPs. Rigid precursor initiator poly (vinylbenzyl chloride) (PVBC) was first grafted onto the CNF surface via phase-transfer catalysis, forming a branched macroinitiator (CNF-g-PVBC) with chlorine contents ranging from 4.

View Article and Find Full Text PDF

The development and characterization of quaternary phosphonium compounds (QPCs) have long benefitted from their incorporation into a cornerstone reaction in organic synthesis - the Wittig reaction. These structures have, more recently, been developed into a wide variety of novel applications, ranging from phase transfer catalysis to mitochondrial targeting. Importantly, their antimicrobial action has demonstrated great promise against a wide variety of bacteria.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

Recent advances in organocatalytic atroposelective reactions.

Beilstein J Org Chem

January 2025

Department of Organic Chemistry, Faculty of Natural Science, Comenius University Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia.

Axial chirality is present in a variety of naturally occurring compounds, and is becoming increasingly relevant also in medicine. Many axially chiral compounds are important as catalysts in asymmetric catalysis or have chiroptical properties. This review overviews recent progress in the synthesis of axially chiral compounds via asymmetric organocatalysis.

View Article and Find Full Text PDF

Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!