Routinely diagnosed simple solid carcinoma (SSC) of the canine mammary gland comprises a heterogeneous group of tumors. Seventy-two cases that had been diagnosed as SSC based on hematoxylin and eosin-stained tissue sections were reclassified immunohistochemically on the basis of myoepithelial markers p63 and α-smooth muscle actin, as well as a luminal epithelial marker cytokeratin 8. Only 23 cases (32%) were true SSC, composed only of luminal epithelial cells, whereas 11 cases (15%) were malignant myoepithelioma (MM), composed predominantly of myoepithelial cells, and 38 cases (53%) were biphasic carcinoma (BC), characterized by biphasic proliferation of luminal epithelial and basal/myoepithelial components. As the pathological parameters were compared between the reclassified tumor types, infiltrative potential, vascular/lymphatic invasion, lymph node metastasis, and Ki-67 labeling index were higher in true SSC compared with MM and BC, suggesting that the former may exhibit a poorer prognosis compared with the latter two.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0300985813516637 | DOI Listing |
Dev Biol
January 2025
Department of Bioengineering, University of Texas at Dallas, Richardson, TX; Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX. Electronic address:
During lung development, the embryonic airway originates as a wishbone-shaped epithelial tube, which undergoes a series of branching events to build the bronchial tree. This process depends crucially on cell proliferation and is thought to involve distinct branching modes: lateral branching, wherein daughter branches emerge along the length of a parent branch, and bifurcations, wherein the tip of a parent branch splits to form two new daughter branches. The developing airway is fluid-filled, and previous studies have shown that altered luminal pressure can influence rates of branching morphogenesis.
View Article and Find Full Text PDFJ Biochem
January 2025
Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.
The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, China.
The intestinal epithelium, beyond its role in absorption and digestion, serves as a critical protective mechanical barrier that delineates the luminal contents and the gut microbiota from the lamina propria within resident mucosal immune cells to maintain intestinal homeostasis. The barrier is manifested as a contiguous monolayer of specialized intestinal epithelial cells (IEC), interconnected through tight junctions (TJs). The integrity of this epithelial barrier is of paramount.
View Article and Find Full Text PDFEur J Cell Biol
January 2025
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA. Electronic address:
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function.
View Article and Find Full Text PDFFront Oncol
January 2025
Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
Introduction: The current understanding of colorectal carcinogenesis is based on the adenoma-carcinoma sequence, where genetics, intestinal microbiota changes and local immunity shifts seem to play the key roles. Despite the emerging evidence of dysbiotic intestinal state and immune-cell infiltration changes in patients with colorectal adenocarcinoma, early and advanced adenoma as precursors of colorectal cancer, and carcinoma as the following progression, are rather less studied. The newly colon-site adapted AI-based analysis of immune infiltrates is able to predict long-term outcomes of colon carcinoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!