The synthesis and X-ray crystal structure of a potassium adduct of a monoanionic CNC-pincer ligand featuring two mesoionic carbenes is reported. Owing to the peculiar electronic and steric properties of this ligand, the first neutral stable Ni(II)-hydride, and an unusual Cu(II) complex displaying a seesaw geometry, have been isolated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cc49385gDOI Listing

Publication Analysis

Top Keywords

isolation potassium
4
potassium bis123-triazol-5-ylidenecarbazolide
4
bis123-triazol-5-ylidenecarbazolide stabilizing
4
stabilizing pincer
4
pincer ligand
4
ligand reactive
4
reactive late
4
late transition
4
transition metal
4
metal complexes
4

Similar Publications

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.

View Article and Find Full Text PDF

To understand the interactions of entomopathogenic fungi with forage plants and their influence on associated herbivorous, we evaluated the influence of endophytic colonization with three isolates (CEPAF_ENT 25, CEPAF_ENT 27, and IBCB 425) of Metarhizium anisopliae on Cynodon dactylon, regarding the biological and behavioral aspects of Collaria scenica, an emerging sucking pest in pastoral systems in Brazil. The application of suspensions at the base of plant (drench) was effective in promoting endophytic colonization, especially in the roots, with emphasis on isolates CEPAF_ENT25 and CEPAF_ENT27. Despite the significant reduction in damage caused by C.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!