Background: Category fluency is a widely used task that relies on multiple neurocognitive processes and is a sensitive assay of cortical dysfunction, including in schizophrenia. The test requires naming of as many words belonging to a certain category (e.g., animals) as possible within a short period of time. The core metrics are the overall number of words produced and the number of errors, namely non-members generated for a target category. We combine a computational linguistic approach with a candidate gene approach to examine the genetic architecture of this traditional fluency measure.
Methods: In addition to the standard metric of overall word count, we applied a computational approach to semantics, Latent Semantic Analysis (LSA), to analyse the clustering pattern of the categories generated, as it likely reflects the search in memory for meanings. Also, since fluency performance probably also recruits verbal learning and recall processes, we included two standard measures of this cognitive process: the Wechsler Memory Scale and California Verbal Learning Test (CVLT). To explore the genetic architecture of traditional and LSA-derived fluency measures we employed a candidate gene approach focused on SNPs with known function that were available from a recent genome-wide association study (GWAS) of schizophrenia. The selected candidate genes were associated with language and speech, verbal learning and recall processes, and processing speed. A total of 39 coding SNPs were included for analysis in 665 subjects.
Results And Discussion: Given the modest sample size, the results should be regarded as exploratory and preliminary. Nevertheless, the data clearly illustrate how extracting the meaning from participants' responses, by analysing the actual content of words, generates useful and neurocognitively viable metrics. We discuss three replicated SNPs in the genes ZNF804A, DISC1 and KIAA0319, as well as the potential for computational analyses of linguistic and textual data in other genomics tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4039573 | PMC |
http://dx.doi.org/10.1016/j.cortex.2013.12.004 | DOI Listing |
Alzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.
View Article and Find Full Text PDFBackground: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.
View Article and Find Full Text PDFCerebral beta-amyloid accumulation is the key initiator of Alzheimer's disease (AD) pathology. Most familial early-onset AD mutations in the APP, PSEN1/2 genes increase the ratio of Abeta42:Abeta40, which drives beta-amyloid accumulation in the brain. In 2001, the late Steve Wagner, Maria Kounnas, and I directed an agnostic high-throughput screen for compounds that would reverse the Abeta42:Abeta40, ratio, and discovered the first non-NSAID (second generation) gamma secretase modulators (GSM) at TorreyPines Therapeutics.
View Article and Find Full Text PDFCurr Gene Ther
January 2025
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313, Tehran, Iran.
The 5,000 to 8,000 monogenic diseases are inherited disorders leading to mutations in a single gene. These diseases usually appear in childhood and sometimes lead to morbidity or premature death. Although treatments for such diseases exist, gene therapy is considered an effective and targeted method and has been used in clinics for monogenic diseases since 1989.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!