The microbial consumption of nitrous oxide (N2O) has gained great interest since it was revealed that this process could mitigate the greenhouse effect of N2O. The consumption of N2O results from its reduction to dinitrogen gas (N2) as part of the denitrification process. However, there is ongoing debate regarding an alternative pathway, namely reduction of N2O to NH4(+), or assimilatory N2O consumption. To date, this pathway is poorly investigated and lacks unambiguous evidence. Enrichment of denitrifying activated sludge using a mineral nitrogen-free medium rendered a mixed culture capable of anoxic and oxic N2O consumption. Dilution plating, isolation and deoxyribonucleic acid fingerprinting identified a collection of Pseudomonas stutzeri strains as dominant N2O consumers in both anaerobic and aerobic enrichments. A detailed isotope tracing experiment with a Pseudomonas stutzeri isolate showed that consumption of N2O via assimilatory reduction to NH4(+) was absent. Conversely, respiratory N2O reduction was directly coupled to N2 fixation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.12404DOI Listing

Publication Analysis

Top Keywords

pseudomonas stutzeri
12
n2o consumption
12
n2o
9
nitrous oxide
8
stutzeri strains
8
anoxic oxic
8
consumption n2o
8
n2o reduction
8
consumption
6
pathway nitrous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!