The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4057516 | PMC |
http://dx.doi.org/10.1186/cc13702 | DOI Listing |
Sci Rep
January 2025
The Queen's Medical Center, 1301 Punchbowl Street, QET 4M, Honolulu, Hawai'i, 96813, USA.
High flow nasal cannula (HFNC) can reduce the need for intubation in patients with coronavirus disease-19 (COVID-19) pneumonia induced acute hypoxemic respiratory failure (AHRF), but predictors of HFNC success could be characterized better. C-reactive protein (CRP) and D-dimer are associated with COVID-19 severity and progression. However, no one has evaluated the use of serial CRP and D-dimer ratios to predict HFNC success.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Cardiac Surgery Critical Care Center Inpatient Ward 1, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Objective: To investigate the effectiveness of initial hemostatic resuscitation(IHR) on the treatment of bleeding with recombinant human coagulation factor VIIa after cardiac surgery.
Methods: The clinical data of patients who received rFVIIa hemostatic treatment after cardiac surgery at Beijing Anzhen Hospital, Capital Medical University, from January 1, 2021, to December 31, 2021 were retrospectively collected. A total of 152 cases were included in the study.
BMC Pulm Med
January 2025
Department of Geriatrics, Harrison International Peace Hospital, Intersection of Renmin Road, Hongqi Street, Taocheng District, Hengshui City, Hebei Province, 053000, China.
Objectives: To explore the factors related to the progression of chronic obstructive pulmonary disease (COPD).
Methods: 80 COPD patients treated between January 2020 and December 2022. The patients' pulmonary functions at their first hospital admission were categorized into four groups: Grade I, Grade II, Grade III and Grade IV.
J Surg Res
January 2025
Division of Trauma and Surgical Critical Care, Department of Surgery, Orlando Regional Medical Center, Orlando, Florida; Department of Surgical Education, Orlando Regional Medical Center, Orlando, Florida. Electronic address:
Introduction: This systematic review aims to evaluate the optimal management of acute respiratory distress syndrome (ARDS) in critically ill surgical patients, specifically focusing on positioning, extracorporeal membrane oxygenation (ECMO) use, ventilation, fluid resuscitation, and pharmacological treatments.
Methods: A systematic review was conducted utilizing four databases including PubMed, Google Scholar, EMBASE, and ProQuest. This study followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was registered with The International Prospective Register of Systematic Reviews.
J Clin Anesth
January 2025
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA. Electronic address:
Study Objective: To assess whether, in a lung resection cohort with a low probability of confounding by indication, higher FiO is associated with an increased risk of impaired postoperative oxygenation - a clinical manifestation of lung injury/dysfunction.
Design: Pre-specified registry-based retrospective cohort study.
Setting: Two large academic hospitals in the United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!