High precision fabrication and positioning of nanoelectrodes in a nanopore.

ACS Nano

Department of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.

Published: February 2014

A simple and versatile method for the direct fabrication of tunneling electrodes with controllable gap distance by using electron-beam-induced deposition (EBID) is presented. We show that tunneling nanogaps smaller than the minimum feature size realizable by conventional EBID can be achieved with a standard scanning electron microscope. These gaps can easily be embedded in nanopores with high accuracy. The controllability of this fabrication method and the nanogap geometry was verified by SEM and TEM imaging. Furthermore, tunneling spectroscopy in a group of solvents with different barrier heights was used to determine the nanogap functionality. Ultimately, the presented fabrication method can be further applied for the fabrication of arrays of nanogap/nanopores or nanogap electrodes with tunable electrode materials. Additionally, this method can also offer direct fabrication of nanoscale electrode systems with tunable spacing for redox cycling and plasmonic applications, which represents an important step in the development of tunneling nanopore structures and in enhancing the capabilities of nanopore sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn406586mDOI Listing

Publication Analysis

Top Keywords

direct fabrication
8
fabrication method
8
fabrication
6
high precision
4
precision fabrication
4
fabrication positioning
4
positioning nanoelectrodes
4
nanoelectrodes nanopore
4
nanopore simple
4
simple versatile
4

Similar Publications

Edge contacts offer a significant advantage for enhancing the performance of semiconducting transition metal dichalcogenide (TMDC) devices by interfacing with the metallic contacts on the lateral side, which allows the encapsulation of all of the channel material. However, despite intense research, the fabrication of feasible electrical edge contacts to TMDCs to improve device performance remains a great challenge, as interfacial chemical characterization via conventional methods is lacking. A major bottleneck in explicitly understanding the chemical and electronic properties of the edge contact at the metal-two-dimensional (2D) semiconductor interface is the small cross section when characterizing nominally one-dimensional edge contacts.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

Introduction: Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored.

View Article and Find Full Text PDF

Purpose: The study conducts a comparative analysis between two prominent methods for fabricating composites for bone scaffolds-the (solid) solvent method and the solvent-free (melting) method. While previous research has explored these methods individually, this study provides a direct comparison of their outcomes in terms of physicochemical properties, cytocompatibility, and mechanical strength. We also analyse their workflow and scalability potentials.

View Article and Find Full Text PDF

Low-threshold anisotropic polychromatic emission from monodisperse quantum dots.

Natl Sci Rev

February 2025

Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals with favorable optoelectronic characteristics, one of which is their multi-excitonic behavior that enables broadband polychromatic light generation and amplification from monodisperse QDs. However, the practicality of this has been limited by the difficulty in achieving spatial separation and patterning of different colors as well as the high pumping intensity required to excite the multi-excitonic states. Here, we have addressed these issues by integrating monodisperse QDs in multi-excitonic states into a specially designed cavity, in which the QDs exhibit an anisotropic polychromatic emission (APE) characteristic that allows for tuning the emission from green to red by shifting the observation direction from perpendicular to lateral.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!