This study investigates the human ability to perceive biological movements through friction sounds produced by drawings and, furthermore, the ability to recover drawn shapes from the friction sounds generated. In a first experiment, friction sounds, real-time synthesized and modulated by the velocity profile of the drawing gesture, revealed that subjects associated a biological movement to those sounds whose timbre variations were generated by velocity profiles following the 1/3 power law. This finding demonstrates that sounds can adequately inform about human movements if their acoustic characteristics are in accordance with the kinematic rule governing actual movements. Further investigations of our ability to recognize drawn shapes were carried out in 2 association tasks in which both recorded and synthesized sounds had to be associated to both distinct and similar visual shapes. Results revealed that, for both synthesized and recorded sounds, subjects made correct associations for distinct shapes, although some confusion was observed for similar shapes. The comparisons made between recorded and synthesized sounds lead to conclude that the timbre variations induced by the velocity profile enabled the shape recognition. The results are discussed in the context of the ecological and ideomotor frameworks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0035441 | DOI Listing |
Sci Rep
January 2025
Shanghai Frontiers Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai, 201620, China.
With the rapid development of industrialization and urbanization, the impact of noise on people's health has become an increasingly serious issue, but it is still a challenge for the reducing the noise due to its complex property. Textiles with many loose porous structures have gained much significant attentions, thus chenille yarns with plush fibers on the surface, and polyester monofilament were chosen to fabricate the integrated knitting yarns, and their fundamental and mechanical properties were fully evaluated. The results showed that the diameter and braiding angle of the blended yarns decreased with the increase of pitch, resulting in a linear correlation of R > 0.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel.
View Article and Find Full Text PDFJ Exp Biol
December 2024
Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA.
Br J Community Nurs
December 2024
Department of Medical-Surgical Nursing, Faculty of Health Sciences, Universitas Muhammadiyah Magelang, Indonesia.
Burns are injuries to the skin or the underlying tissue system caused by heat, radiation, electricity, friction or chemicals. Burns can cause pain and discomfort during dressing changes; a person's pain response varies depending on individual perception. The pain response can indicate tissue damage in the body, as pain causes a person to experience discomfort.
View Article and Find Full Text PDFJ Chem Phys
October 2024
Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany.
The smooth emergence of shear elasticity is a hallmark of the liquid to glass transition. In a liquid, viscous stresses arise from local structural rearrangements. In the solid, Eshelby has shown that stresses around an inclusion decay as a power law r-D, where D is the dimension of the system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!