Melanocortins are endogenous peptides that exert protective actions on the host physiology. The broad modulatory effects of these molecules suggest that they might influence the mediator network induced during liver regeneration. The research aim was to determine if melanocortin treatment alters liver molecular changes induced by partial hepatectomy (PH). Rats under isoflurane anesthesia were subjected to standard 70% PH or sham surgery. Animals received a single i.v. injection of Nle4, DPhe7-α-melanocyte stimulating hormone (NDP-MSH) or saline 30 min before surgery. Sacrifice was performed at time intervals between 4 and 72 h. A preliminary screening based on TaqMan low-density array (TLDA) identified 71 transcripts altered by PH. Real-time PCR analysis revealed that NDP-MSH modulated the expression of a substantial proportion of these transcripts including several chemokines and their receptors. The critical signaling pathway interleukin-6 (IL-6)/signal transducer and activator of transcription (STAT)/suppressor of cytokine signaling (SOCS) was significantly enhanced by NDP-MSH. Further, peptide treatment considerably reduced the decline of IκBα protein caused by PH. Although the final organ regeneration was not substantially affected, NDP-MSH modulated expression of cell cycle mediators and exerted subtle influences on hepatocyte replication. Most of the changes brought about by NDP-MSH, a peptide approved for clinical use, should be salutary during liver regeneration.

Download full-text PDF

Source

Publication Analysis

Top Keywords

modulatory effects
8
partial hepatectomy
8
hepatectomy rats
8
liver regeneration
8
ndp-msh modulated
8
modulated expression
8
ndp-msh peptide
8
ndp-msh
6
effects ndp-msh
4
ndp-msh regenerating
4

Similar Publications

Advancing vaccine technology through the manipulation of pathogenic and commensal bacteria.

Mater Today Bio

December 2024

College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City, Jeollabuk-do, 54596, Republic of Korea.

Advancements in vaccine technology are increasingly focused on leveraging the unique properties of both pathogenic and commensal bacteria. This revolutionary approach harnesses the diverse immune modulatory mechanisms and bacterial biology inherent in different bacterial species enhancing vaccine efficacy and safety. Pathogenic bacteria, known for their ability to induce robust immune responses, are being studied for their potential to be engineered into safe, attenuated vectors that can target specific diseases with high precision.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Molecular Mechanisms of Nicergoline from Ergot Fungus in Blocking Human 5-HT3A Receptor.

J Microbiol Biotechnol

November 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea.

This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.

View Article and Find Full Text PDF

Globally, diabetes mellitus (DM) and its complications are considered among the most significant public health problems. According to numerous scientific studies, Plants and their bioactive compounds may reduce inflammation and oxidative stress (OS), leading to a reduction in the progression of DM. Moringa oleifera (MO), widely used in Ayurvedic and Unani medicine for centuries because of its health-promoting characteristics, particularly its ability to control DM and its related complications.

View Article and Find Full Text PDF

Doxorubicin (DOX)-induced chemobrain has been reported in several studies. Its main culprit is the induction of massive amounts of reactive oxygen species (ROS), hence triggering damage to brain tissues and thus leading to neuroinflammation. Biochanin A (BIO-A) is known to be an antioxidant, anti-inflammatory, and neuroprotective agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!