The enantiomeric differentiation of a series of chiral β-amino alcohols (A) is attempted, for the first time, by applying the kinetic method using L-proline, L-tryptophan, 4-iodo-L-phenylalanine or 3, 5-diiodo-L-tyrosine as the chiral references (Ref) and Cu(2+) or Ni(2+) ion (M) as the central metal ion. The trimeric diastereomeric adduct ions, [M+(Ref)2+A-H](+), formed under electrospray ionization conditions, are subjected for collision-induced dissociation (CID) experiments. The products ions, formed by the loss of either a reference or an analyte, detected in the CID spectra are evaluated for the enantiomeric differentiation. All the references showed enantiomeric differentiation and the R(chiral) values are better for the aromatic alcohols than for aliphatic alcohols. Notably, the R(chiral) values of the aliphatic amino alcohols enhanced when Ni(2+) is used as the central metal ion. The experimental results are well supported by computational studies carried out on the diastereomeric dimeric complexes. The computational data of amino alcohols is correlated with that of amino acids to understand the structural interaction of amino alcohols with reference molecule and central metal ion and their role on the stabilization of the dimeric complexes. Application of flow injection MS/MS method is also demonstrated for the enantiomeric differentiation of the amino alcohols.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.3312DOI Listing

Publication Analysis

Top Keywords

enantiomeric differentiation
20
amino alcohols
16
central metal
12
metal ion
12
alcohols
8
β-amino alcohols
8
electrospray ionization
8
rchiral values
8
dimeric complexes
8
enantiomeric
5

Similar Publications

Etoxazole, a widely used mite growth inhibitor, contains a chiral center in its chemical structure, resulting in two mirror-image enantiomers. These enantiomers of etoxazole display significant differences in biological activity and environmental behavior. In bioassays conducted against , it was observed that S-etoxazole demonstrated approximately 279.

View Article and Find Full Text PDF

Oxidized derivatives of cholesterol play an important role in the functioning of biomembranes. Unlike other biomolecules, which are physiologically active in only one enantiomeric form, some oxysterols exist endogenously as two stereoisomers that exhibit strictly different biological effects. In this paper, we focused our attention on 22-hydroxycholesterol (22-OH) epimers, 22()-OH and 22()-OH, and examined their properties in Langmuir monolayers spread at the air/water interface, using classical surface manometry complemented with Brewster angle microscopy (BAM) images of the film texture.

View Article and Find Full Text PDF

Chiral Au@Pt nanoparticles (NPs) with optically plasmonic and catalytic active surfaces were sustainably prepared to serve as label-free surface enhanced Raman scattering (SERS) platform to distinguish D- and L-enantiomers of alanine and tartaric acid. Surface morphologies were characterized by high-angle annular dark-field imaging-scanning transmission electron microscopy (HADDF-STEM) and selected area energy diffraction (SAED) patterns. The amounts of Pt on chiral Au NPs were estimated by the inductively coupled plasma-optical emission spectrometer (ICP-OES) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Estrogen effects in tissue are mediated in part through activation of the surface estrogen receptor GPER, a broadly expressed G protein-coupled receptor that impacts a wide range of normal and pathologic processes, including metabolism, vascular health, inflammation, and cancer. A commonly used synthetic and specific GPER agonist, named G-1, antagonizes tumors by promoting cellular differentiation and enhancing tumor immunogenicity. G-1 is a racemic compound, and since its discovery, the question of whether both enantiomers display agonist activity or the agonist activity resides primarily in a single enantiomer has never been fully resolved.

View Article and Find Full Text PDF

Plant-Derived and Synthetic Nicotine in E-Cigarettes: Is Differentiation with NMR Spectroscopy Possible?

Chem Res Toxicol

December 2024

Spectral Service AG, Emil-Hoffmann-Straße 33, Cologne 50996, Germany.

To circumvent regulatory frameworks, many producers start to substitute plant-derived nicotine (tobacco-derived nicotine, TDN) by synthetic nicotine (tobacco-free nicotine, TFN) in e-cigarette products. Due to the higher costs of enantiomeric synthesis and purification of TFN, there is a need to develop an analytical method that clearly distinguishes between the two sources. To trace nicotine's origin, its enantiomeric purity can be postulated by H NMR spectroscopy using ()-(-)-1,1'-binaphthyl-2,2'-diyl hydrogen phosphate (BNPPA) as a chiral complexing agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!