A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonredundant function of two highly homologous octopamine receptors in food-deprivation-mediated signaling in Caenorhabditis elegans. | LitMetric

It is common for neurotransmitters to possess multiple receptors that couple to the same intracellular signaling molecules. This study analyzes two highly homologous G-protein-coupled octopamine receptors using the model animal Caenorhabditis elegans. In C. elegans, the amine neurotransmitter octopamine induces activation of cAMP response element-binding protein (CREB) in the cholinergic SIA neurons in the absence of food through activation of the Gq-coupled octopamine receptor SER-3 in these neurons. We also analyzed another Gq-coupled octopamine receptor, SER-6, that is highly homologous to SER-3. As seen in ser-3 deletion mutants, octopamine- and food-deprivation-mediated CREB activation was decreased in ser-6 deletion mutants compared with wild-type animals, suggesting that both SER-3 and SER-6 are required for signal transduction. Cell-specific expression of SER-6 in the SIA neurons was sufficient to restore CREB activation in the ser-6 mutants, indicating that SER-6, like SER-3, functions in these neurons. Taken together, these results demonstrate that two similar G-protein-coupled receptors, SER-3 and SER-6, function in the same cells in a nonredundant manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.23345DOI Listing

Publication Analysis

Top Keywords

highly homologous
12
octopamine receptors
8
caenorhabditis elegans
8
sia neurons
8
gq-coupled octopamine
8
octopamine receptor
8
deletion mutants
8
creb activation
8
ser-3 ser-6
8
ser-6
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!