Tissue engineering scaffold for sequential release of vancomycin and rhBMP2 to treat bone infections.

J Biomed Mater Res A

Department of Mechanical Engineering and Engineering Science, The University of North Carolina at Charlotte, Charlotte, North Carolina, 28223.

Published: December 2014

The ability of silica calcium phosphate nanocomposite (SCPC75) for the controlled sequential delivery of vancomycin (Vanc) and rhBMP2 was evaluated. Fourier transform infrared spectroscopy analyses of the SCPC75 showed an increase in the bond energy of the PO4 (-3) due to the interactions with negatively charged moieties of Vanc. Furthermore, a decrease in the bond energy of the Si-O-Si functional groups was observed after rhBMP2 adsorption. In conjunction with the differences in bond site and bond energy at the ceramic/drug interface, significant differences in drug release kinetics and bioceramic dissolution rate were found. UV-vis spectrometry showed a burst release of Vanc in the first 8 h followed by a sustained release stage for up to 28 days. ELISA showed first-order release kinetics of rhBMP2 without burst release. The rhBMP2 release from SCPC75 was associated with a significantly lower rate of Ca and a higher rate of Si dissolutions when compared with Vanc release over identical time periods. Differences in the release kinetic profiles of Vanc and rhBMP2 from the SCPC75-Vanc/SCPC75-rhBMP2 scaffolds at 70/30, 50/50, or 20/80 ratios allowed for sequential drug release profiles that could be exploited to customize doses and release duration of each drug. The released rhBMP2 significantly upregulated MC3T3-E1 expression of collagen type I, osteopontin, and osteocalcin mRNA by 12.6-, 3.3-, and 2.4-fold, respectively. The released Vanc demonstrated bactericidal effects on Staphylococcus aureus in vitro. These results suggest the potential of SCPC75-Vanc-rhBMP2 scaffolds in the treatment of damaged and/or infected bone.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.35092DOI Listing

Publication Analysis

Top Keywords

bond energy
12
release
11
vanc rhbmp2
8
drug release
8
release kinetics
8
burst release
8
rhbmp2
7
vanc
6
tissue engineering
4
engineering scaffold
4

Similar Publications

The focus of this research is to examine the safe-haven properties of seven ethical and conventional asset classes using two sophisticated techniques: quantile coherence and Wavelet coherence. We analyze data ranging from October 3, 2011, to September 30, 2021, that encapsulates several global risk events. The results exhibit either positive or neutral associations between most assets and the Geopolitical Risk (GPR), indicating their safe haven capabilities against the GPR shocks.

View Article and Find Full Text PDF

New tetrakis Eu and Gd β-diketonate complexes containing benzimidazolium (Bzim) as the counterion were synthesized by the one-pot method. The Bzim[Eu(tta)]·HO complex was further incorporated into a poly(methyl methacrylate) matrix (PMMA) at 1, 5, and 10% (w/w), which revealed highly desirable photonic features. The Eu and Gd complexes were characterized by elemental and thermal analyses, in addition to ESI-MS spectrometry, FTIR, and Raman spectroscopy.

View Article and Find Full Text PDF

A one-pot, acid-, base-, and metal-free, multicomponent strategy has been developed to synthesize spiro thiochromene-oxindole derivatives as potential anti-inflammatory agents. The synthesized compounds were screened for their anti-inflammatory activity by inhibiting heat-induced Bovine Serum Albumin (BSA) denaturation assay, revealing moderate to good efficacy. Compounds 4e, 4k, and 4h exhibited the highest activity, inhibiting BSA denaturation by 90.

View Article and Find Full Text PDF

MXenes quantum dots (QDs), including NbC, NbCO, and NbCF, are emerging materials with exceptional structural, electronic, and optical properties, making them highly suitable for biomedical applications. This study investigates the structural optimization, stability, electronic properties, and drug-loading potential of these QDs using fluorouracil (Flu) as a model drug. Structural analyses show that the functionalization of NbC with O and F atoms enhances stability, with binding energies (BEs) of 7.

View Article and Find Full Text PDF

Water-based green deep eutectic solvent: Application in liquid-liquid microextraction of trace bisphenol A in edible oils.

Talanta

December 2024

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, People's Republic of China. Electronic address:

In this study, tetrabutylammonium chloride (TBAC), tetrabutylammonium bromide (TBAB), and choline chloride (ChCl) were innovatively applied in the liquid-liquid microextraction (LLME) of bisphenol A (BPA) from edible oil by forming water-based deep eutectic solvent (WDES). The presence of water is not only used in the synthesis of WDES, but also modulates the viscosity of DES and improve its diffusion and mass transfer properties. Several crucial parameters affecting the extraction efficiency were examined, including the type and amount of WDES and the extraction time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!