Biochar can influence native soil organic carbon (SOC) mineralisation through "priming effects". However, the long-term direction, persistence and extent of SOC priming by biochar remain uncertain. Using natural (13)C abundance and under controlled laboratory conditions, we show that biochar-stimulated SOC mineralisation ("positive priming") caused a loss of 4 to 44 mg C g(-1) SOC over 2.3 years in a clayey, unplanted soil (0.42% OC). Positive priming was greater for manure-based or 400°C biochars, cf. plant-based or 550°C biochars, but was trivial relative to recalcitrant C in biochar. From 2.3 to 5.0 years, the amount of positively-primed soil CO2-C in the biochar treatments decreased by 4 to 7 mg C g(-1) SOC. We conclude that biochar stimulates native SOC mineralisation in the low-C clayey soil but that this effect decreases with time, possibly due to depletion of labile SOC from initial positive priming, and/or stabilisation of SOC caused by biochar-induced organo-mineral interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3896930PMC
http://dx.doi.org/10.1038/srep03687DOI Listing

Publication Analysis

Top Keywords

soc mineralisation
12
organic carbon
8
clayey soil
8
soc
8
g-1 soc
8
positive priming
8
biochar
6
soil
5
long-term influence
4
influence biochar
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!