In this study, we investigated whether ammonia emissions from industrial composting of organic waste may influence the surrounding environment, using lichens as bioindicators. To this purpose, samples of N-tolerant and N-sensitive lichens, namely Xanthoria parietina and Evernia prunastri, were transplanted for 1-3 months along transects at increasing distance (0-400 m) from a composting facility in Tuscany, Italy. Atmospheric concentrations of ammonia were measured using passive samplers. The physiological response of lichen transplants was investigated by means of the photosynthetic efficiency (measured as chlorophyll a fluorescence emission), the integrity of cell membranes (measured as electrolyte leakage), and sample viability (measured as enzymatic activity of dehydrogenase). Epiphytic lichen communities were investigated using biodiversity indices. The results showed decreasing concentrations of ammonia, from 48.7 μg/m(3) at the composting facility to 2.7 μg/m(3) at 400 m. The N-tolerant X. parietina was not affected and some physiological parameters even showed a higher performance, while the N-sensitive E. prunastri showed a reduced performance with increasing atmospheric concentrations approaching the source. A shift from lichen communities composed by meso-acidophilous species (actual condition) to more nitrophilous communities in the near future, approaching the composting facility is suggested. It is concluded that lichens can provide useful data for decision-makers to establish correct science-based environmentally sustainable waste management policies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-014-2526-3 | DOI Listing |
Heliyon
January 2025
School of Engineering, Mining Engineering Department, Urmia University, Urmia, Iran.
The rapid impact assessment matrix (RIAM) is a widely utilized tool for evaluating environmental impacts in municipal solid waste management. However, the traditional RIAM (T-RIAM) method includes ambiguities in its scoring classification, which can hinder decision-making accuracy. This study introduces a modified RIAM approach, enhancing classification precision by refining impact categories, making it particularly valuable for projects constrained by time and resources.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.
View Article and Find Full Text PDFSci Total Environ
January 2025
Dept. of Civil and Environmental Engineering, Univ. of Maryland, College Park, MD 20742, USA.
Urban stormwater pollution poses serious risks to human and environmental health, including trace metals toxicity. To improve the performance of existing highway Vegetated Filter Strips (VFS), which have limited performance for volume reduction and pollutant removal, amendment with a Vegetated Compost Blanket (VCB), a layer of seeded compost, has been proposed. A novel VCB/VFS system was assessed as a Stormwater Control Measure (SCM) via particulate matter and trace metals removal performance.
View Article and Find Full Text PDFBMC Res Notes
January 2025
Department of Chemistry, FacultyofScience, Nigerian Defence Academy Kaduna State, Kaduna, Nigeria.
The study examines the concentrations of heavy metals in agricultural soil, compost from landfills, maize plants, and spinach crops. The results show that compost from landfills had levels exceeding EU requirements for Cd, Cu, Ni, Pb, and Zn. However, agricultural soil contained trace amounts of heavy metals.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!