High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO3 and KNbO3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms4172DOI Listing

Publication Analysis

Top Keywords

thermotropic phase
8
phase boundaries
8
boundaries classic
8
classic ferroelectrics
8
transitions simple
8
property coefficients
8
ferroelectrics
4
ferroelectrics high-performance
4
high-performance piezoelectrics
4
piezoelectrics lead-based
4

Similar Publications

Columnar Mesophases and Organogels Formed by H-Bound Dimers Based on 3,6-Terminally Difunctionalized Triphenylenes.

Gels

December 2024

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.

A series of triphenylene (TP) compounds-denoted 3,6-THTP-DiCOH-bearing four hexyloxy ancillary chains and two variable-length alkoxy chains terminally functionalized with hydroxyl groups have been synthesized and characterized. The shorter homologs revealed mesogenic characteristics, giving rise to thermotropic mesophases in which π-stacked columns of H-bound dimers self-organize yielding superstructures. Molecular-scale models are proposed to account for their structural features.

View Article and Find Full Text PDF

The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.

View Article and Find Full Text PDF

Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis.

Molecules

December 2024

REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.

View Article and Find Full Text PDF

Effect of Triterpenoids Betulin and Betulinic Acid on Pulmonary Surfactant Membranes.

J Membr Biol

December 2024

Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.

Article Synopsis
  • - The study investigates how triterpenoids betulin (BE) and betulinic acid (BA) influence the behavior and packing of pulmonary surfactant membranes, particularly focusing on their effects on dipalmitoylphosphatidylcholine (DPPC) bilayers using various scientific methods.
  • - Findings indicate that BE has a more significant impact on DPPC than BA; BE at 20 mol% causes changes in phase transitions, while BA at lower concentrations decreases the main transition temperature and disrupts the pretransition entirely.
  • - Both triterpenoids enhance lateral mobility and dehydration in DPPC structures, leading to larger liposomes and changed molecular interactions, demonstrated by hydrogen bonding between the triterpenoids and
View Article and Find Full Text PDF

We show that stable, freely suspended liquid crystal films can be made from the ferroelectric nematic (N) phase and from the recently discovered polar, lamellar SmZ and SmA phases. The N films display two-dimensional, smectic-like parabolic focal conic textures comprising director/polarization bend that are a manifestation of the electrostatic suppression of director splay in the film plane. In the SmZ and SmA phases, the smectic layers orient preferentially normal to the film surfaces, a condition never found in typical thermotropic or lyotropic lamellar LC phases, with the SmZ films exhibiting focal-conic fan textures mimicking the appearance of typical smectics in glass cells when the layers are oriented normal to the plates, and the SmA films showing a texture of plaquettes of uniform in-plane orientation where both bend and splay are suppressed, separated by grain boundaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!