High-performance piezoelectrics are lead-based solid solutions that exhibit a so-called morphotropic phase boundary, which separates two competing phases as a function of chemical composition; as a consequence, an intermediate low-symmetry phase with a strong piezoelectric effect arises. In search for environmentally sustainable lead-free alternatives that exhibit analogous characteristics, we use a network of competing domains to create similar conditions across thermal inter-ferroelectric transitions in simple, lead-free ferroelectrics such as BaTiO3 and KNbO3. Here we report the experimental observation of thermotropic phase boundaries in these classic ferroelectrics, through direct imaging of low-symmetry intermediate phases that exhibit large enhancements in the existing nonlinear optical and piezoelectric property coefficients. Furthermore, the symmetry lowering in these phases allows for new property coefficients that exceed all the existing coefficients in both parent phases. Discovering the thermotropic nature of thermal phase transitions in simple ferroelectrics thus presents unique opportunities for the design of 'green' high-performance materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ncomms4172 | DOI Listing |
Gels
December 2024
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
A series of triphenylene (TP) compounds-denoted 3,6-THTP-DiCOH-bearing four hexyloxy ancillary chains and two variable-length alkoxy chains terminally functionalized with hydroxyl groups have been synthesized and characterized. The shorter homologs revealed mesogenic characteristics, giving rise to thermotropic mesophases in which π-stacked columns of H-bound dimers self-organize yielding superstructures. Molecular-scale models are proposed to account for their structural features.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics and Soft Materials Research Center, University of Colorado, Boulder, CO 80309, USA.
The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.
View Article and Find Full Text PDFMolecules
December 2024
REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.
View Article and Find Full Text PDFJ Membr Biol
December 2024
Faculty of Science, Department of Physics, Ege University, 35100, Bornova, Izmir, Turkey.
Phys Chem Chem Phys
December 2024
Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA.
We show that stable, freely suspended liquid crystal films can be made from the ferroelectric nematic (N) phase and from the recently discovered polar, lamellar SmZ and SmA phases. The N films display two-dimensional, smectic-like parabolic focal conic textures comprising director/polarization bend that are a manifestation of the electrostatic suppression of director splay in the film plane. In the SmZ and SmA phases, the smectic layers orient preferentially normal to the film surfaces, a condition never found in typical thermotropic or lyotropic lamellar LC phases, with the SmZ films exhibiting focal-conic fan textures mimicking the appearance of typical smectics in glass cells when the layers are oriented normal to the plates, and the SmA films showing a texture of plaquettes of uniform in-plane orientation where both bend and splay are suppressed, separated by grain boundaries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!