Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The emerging paradigm of Precision Oncology 3.0 uses panomics and sophisticated methods of statistical reverse engineering to hypothesize the putative networks that drive a given patient's tumour, and to attack these drivers with combinations of targeted therapies. Here, we review a paradigm termed Rapid Learning Precision Oncology wherein every treatment event is considered as a probe that simultaneously treats the patient and provides an opportunity to validate and refine the models on which the treatment decisions are based. Implementation of Rapid Learning Precision Oncology requires overcoming a host of challenges that include developing analytical tools, capturing the information from each patient encounter and rapidly extrapolating it to other patients, coordinating many patient encounters to efficiently search for effective treatments, and overcoming economic, social and structural impediments, such as obtaining access to, and reimbursement for, investigational drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nrclinonc.2013.244 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!