AI Article Synopsis

Article Abstract

The dynamic physical microenvironment of bone affects the activity of osteoblast cells, yet little is known about how osteoblast mechanotransduction depends on different features of a dynamic stimulus. Here we investigated the effect of physiologically relevant oscillatory flow shear stress on the calcium mobility in osteoblast cells within a microfluidic platform that mimics the confined environment of bone matrix. We characterized the spatiotemporal evolution of intracellular calcium 'flickers', an important signature of cell activation, in response to steady, pulsatile, and oscillatory shear stress. We found that oscillatory flow induces surprisingly higher flicker activity than other flow types. We could further attribute this phenomenon to the opening of a stretch activated ion channel, namely TRPM7. We also found that localization of TRPM7 within the cholesterol-enriched lipid raft domains of plasma membranes is essential for its activity. Collectively our findings elucidated a candidate mechanism for the flow mediated stimulation of osteoblast cells. They therefore have implications towards unveiling various facets of bone formation and remodelling in healthy and diseased conditions, including bone-metastasis of various cancer types, diabetes, and inflammatory autoimmune diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ib40174jDOI Listing

Publication Analysis

Top Keywords

osteoblast cells
16
shear stress
12
oscillatory shear
8
oscillatory flow
8
osteoblast
5
oscillatory
4
stress induced
4
induced calcium
4
calcium flickers
4
flickers osteoblast
4

Similar Publications

Targeting TRPC channels for control of arthritis-induced bone erosion.

Sci Adv

January 2025

Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.

Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels.

View Article and Find Full Text PDF

Splicing to orchestrate cell fate.

Mol Ther Nucleic Acids

March 2025

Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China.

Alternative splicing (AS) plays a critical role in gene expression by generating protein diversity from single genes. This review provides an overview of the role of AS in regulating cell fate, focusing on its involvement in processes such as cell proliferation, differentiation, apoptosis, and tumorigenesis. We explore how AS influences the cell cycle, particularly its impact on key stages like G1, S, and G2/M.

View Article and Find Full Text PDF

Background: Osteoporosis fracture is a common and most serious complication of osteoporosis.

Hypothesis: This study sought to assess the level, the diagnostic potential, and the effect of circulating miR-4534 in osteoporotic fractures.

Methods: GSE74209 and GSE93883 were analyzed using GEO2R online tool for differentially expressed microRNAs in osteoporotic fractures.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!